scholarly journals Pollutant Emission and Energy Consumption Analysis of Environmental Protection Facilities in Ultra-Low Emission Coal-Fired Power Units

Author(s):  
Jiang Mingchao ◽  
Li Bing
Author(s):  
Xiaowen Qiu

The carrying capacity of China’s resources and environment has reached a limit. The economic development of different regions has been forced to abandon the original economic development mode manifesting high pollution, high energy consumption, and high emission and to step forward to the new economic development model promoting low energy consumption, low emission, and low pollution. Environmental issues are typical manifestations of market mechanism failure. Government investment in environmental protection, which effectively improves environmental quality, is necessary to achieve sustainable economic development. An index system of the influencing factors that affect regional environmental pollutant emissions was established first in this study to measure accurately the relationship between environmental protection investment in different provinces in China and regional environmental pollution. System GMM (Generalized Method of Moment) method was used to analyze the impact of environmental protection investment on pollutant emissions in 30 provinces in China from 2007 to 2016. Results show that the system GMM method can effectively solve variable endogeneity. Environmental protection investment of explanatory variables has a significant negative effect on pollutant emissions. Among the control variables, per capita GDP (Gross Domestic Product), industrial structure, resident consumption level, and technology market turnover have a significant inhibitory effect on pollutant emissions. Among the control variables, investment in fixed assets and import and export trade is vital in promoting pollutant emission growth. Conclusions provide a reference for improving the governance level of environmental protection investment in China’s provinces, controlling environmental pollution and ecological damage, and realizing a green economic development method.


2021 ◽  
Vol 285 ◽  
pp. 112137
Author(s):  
Yifeng Xue ◽  
Tongran Wu ◽  
Yangyang Cui ◽  
Baohan Gong ◽  
Xueyao Li ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 1600
Author(s):  
Weijiang Liu ◽  
Mingze Du ◽  
Yuxin Bai

As the world’s largest developing country, and as the home to many of the world’s factories, China plays a crucial role in the sustainable development of the world economy regarding environmental protection, energy conservation, and emission reduction issues. Based on the data from 2003–2015, this paper examined the green total factor productivity and the technological progress in the Chinese manufacturing industry. A slack-based measure (SBM) Malmquist productivity index was used to measure the bias of technological change (BTC), input-biased technological change (IBTC), and output-biased technological change (OBTC) by decomposing the technological progress. It also investigated the mechanism of environmental regulation, property right structure, enterprise-scale, energy consumption structure, and other factors on China’s technological progress bias. The empirical results showed the following: (1) there was a bias of technological progress in the Chinese manufacturing industry during the research period; (2) although China’s manufacturing industry’s output tended to become greener, it was still characterized by a preference for overall CO2 output; and (3) the impact of environmental regulations on the Chinese manufacturing industry’s technological progress had a significant threshold effect. The flexible control of environmental regulatory strength will benefit the Chinese manufacturing industry’s technological development. (4) R&D investment, export delivery value, and structure of energy consumption significantly contributed to promoting technological progress. This study provides further insight into the sustainable development of China’s manufacturing sector to promote green-biased technological progress and to achieve the dual goal of environmental protection and healthy economic growth.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1800
Author(s):  
Linfei Hou ◽  
Fengyu Zhou ◽  
Kiwan Kim ◽  
Liang Zhang

The four-wheeled Mecanum robot is widely used in various industries due to its maneuverability and strong load capacity, which is suitable for performing precise transportation tasks in a narrow environment. While the Mecanum wheel robot has mobility, it also consumes more energy than ordinary robots. The power consumed by the Mecanum wheel mobile robot varies enormously depending on their operating regimes and environments. Therefore, only knowing the working environment of the robot and the accurate power consumption model can we accurately predict the power consumption of the robot. In order to increase the applicable scenarios of energy consumption modeling for Mecanum wheel robots and improve the accuracy of energy consumption modeling, this paper focuses on various factors that affect the energy consumption of the Mecanum wheel robot, such as motor temperature, terrain, the center of gravity position, etc. The model is derived from the kinematic and kinetic model combined with electrical engineering and energy flow principles. The model has been simulated in MATLAB and experimentally validated with the four-wheeled Mecanum robot platform in our lab. Experimental results show that the accuracy of the model reached 95%. The results of energy consumption modeling can help robots save energy by helping them to perform rational path planning and task planning.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3775 ◽  
Author(s):  
Khaled Bawaneh ◽  
Farnaz Ghazi Nezami ◽  
Md. Rasheduzzaman ◽  
Brad Deken

Healthcare facilities in the United States account for 4.8% of the total area in the commercial sector and are responsible for 10.3% of total energy consumption in this sector. The number of healthcare facilities increased by 22% since 2003, leading to a 21% rise in energy consumption and an 8% reduction in energy intensity per unit of area (544.8 kWh/m2). This study provides an analytical overview of the end-use energy consumption data in healthcare systems for hospitals in the United States. The energy intensity of the U.S. hospitals ranges from 640.7 kWh/m2 in Zone 5 (very hot) to 781.1 kWh/m2 in Zone 1 (very cold), with an average of 738.5 kWh/m2. This is approximately 2.6 times higher than that of other commercial buildings. High energy intensity in the healthcare facilities, particularly in hospitals, along with energy costs and associated environmental concerns make energy analysis crucial for this type of facility. The proposed analysis shows that U.S. healthcare facilities have higher energy intensity than those of most other countries, especially the European ones. This necessitates the adoption of more energy-efficient approaches to the infrastructure and the management of healthcare facilities in the United States.


2017 ◽  
Vol 90 (8-9) ◽  
pp. 1191-1204 ◽  
Author(s):  
Ping Wang ◽  
Jing Liu ◽  
Jinlong Lin ◽  
Chao-Hsien Chu

Sign in / Sign up

Export Citation Format

Share Document