scholarly journals Simulation study on ±320kV DC power cable steady-state temperature field distribution and its influencing factors

Author(s):  
Zhihan Shi ◽  
Youxiang Yan ◽  
Weiwei Zhang ◽  
Zhipeng Yang ◽  
Pengpeng Wu ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3397 ◽  
Author(s):  
Lan Xiong ◽  
Yonghui Chen ◽  
Yang Jiao ◽  
Jie Wang ◽  
Xiao Hu

The reliability and service life of power cables is closely related to the cable ampacity and temperature rise. Therefore, studying the temperature field distribution and the cable ampacity is helpful to improve the construction guidelines of cable manufacturers. Taking a 8.7/15 kV YJV 1 × 400 XLPE three-loop power cable as the research object, cable temperature is calculated by IEC-60287 thermal circuit method and numerical simulation method, respectively. The results show that the numerical simulation method is more in line with the actual measured temperature, and the relative error is only 0.32% compared with the actual measured temperature. The temperature field and air velocity field of cluster cables with different laying methods are analyzed by finite element method. The corresponding cable ampacity are calculated by secant method. The results show that when the cable is laid at the bottom of the cable trench, the cable current is 420 A, which is 87.5% of the regular laying. Under irregular laying mode, the temperature of cable is higher than that of regular laying mode and the cable ampacity is lower than that of regular laying mode. At the same time, a multiparameter online monitoring system is developed to online monitor the temperature, water level and smoke concentration of the cable.


2021 ◽  
Vol 1820 (1) ◽  
pp. 012100
Author(s):  
Chenyang Ji ◽  
Zhanming Pang ◽  
Yi Zheng ◽  
Hongda Zhou ◽  
Cai Chen ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1792
Author(s):  
Bingbing Dong ◽  
Yu Gu ◽  
Changsheng Gao ◽  
Zhu Zhang ◽  
Tao Wen ◽  
...  

In recent years, the new type design of current transformer with bushing structure has been widely used in the distribution network system due to its advantages of miniaturization, high mechanical strength, maintenance-free, safety and environmental protection. The internal temperature field distribution is an important characteristic parameter to characterize the thermal insulation and aging performance of the transformer, and the internal temperature field distribution is mainly derived from the joule heat generated by the primary side guide rod after flowing through the current. Since the electric environment is a transient field and the thermal environment changes slowly with time as a steady field under the actual conditions, it is more complex and necessary to study the electrothermal coupling field of current transformer (CT). In this paper, a 3D simulation model of a new type design of current transformer for distribution network based on electric-thermal coupling is established by using finite element method (FEM) software. Considering that the actual thermal conduction process of CT is mainly by conduction, convection and radiation, three different kinds of boundary conditions such as solid heat transfer boundary condition, heat convection boundary condition and surface radiation boundary condition are applied to the CT. Through the model created above, the temperature rise process and the distribution characteristics of temperature gradient of the inner conductor under different current, different ambient temperatures and different core diameters conditions are studied. Meanwhile, the hottest temperature and the maximum temperature gradient difference are calculated. According to this, the position of weak insulation of the transformer is determined. The research results can provide a reference for the factory production of new type design of current transformer.


AIP Advances ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 075007 ◽  
Author(s):  
Ruixi Jia ◽  
Qingyu Xiong ◽  
Kai Wang ◽  
Lijie Wang ◽  
Guangyu Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document