scholarly journals Construction Monitoring and Numerical Simulation of Water-Rich Tuff Soft Rock Tunnel

Author(s):  
Fangliang Chen ◽  
Kaihua Zeng ◽  
Xuejun Li ◽  
Manqing Xu ◽  
Hongtao Dai
2013 ◽  
Vol 438-439 ◽  
pp. 949-953
Author(s):  
Hao Bo Fan ◽  
Jin Xing Lai ◽  
Dan Dan Hou

This paper based on Chaoyang tunnel by bench method excavation, using the finite element numerical simulation method, simulates the surrounding rock displacement of soft rock tunnel and the stress characteristics of supporting structure to get the various stages of tunnel surrounding rock stress, strain and the internal force changes of tunnel supporting structure. After the analyses of the numerical simulation results and field monitoring measurement data, the safety and rationality of the method are determined. The research provides certain reference for highway tunnel design and construction.


2013 ◽  
Vol 438-439 ◽  
pp. 964-967
Author(s):  
Bin Zhu ◽  
Xiao Jing Shi

With characteristics of the long span and soft rock tunnel, this paper analyzes the main factors affecting tunnel stable on the basis of the way of tunnel excavation method. The large finite element program is used in research of a tunnel, with a numerical simulation of two different way, top heading and bench method and double side drift method. From the result of stress field and displacement field of the tunnel , some useful conclusion are obtained, that double side drift method is appropriate for this kind of soft rock tunnel.


2013 ◽  
Vol 734-737 ◽  
pp. 773-776
Author(s):  
Zhi Chao Tian ◽  
Long Hao Dong ◽  
Ye Jiao Liu

The pressure control of soft-rock and roadway support has been one of the challenges of underground mines. Soft-rock support is very difficult in many places in China and is becoming a kind of main influencing factors in the development and economic of mining community. Numerical simulation research on the deformation mechanism of soft-rock tunnel contributes to the development of soft-rock support theory. The numerical calculation model of shallow buried soft-rock is based on Hongya coalmine; ANSYS is used to analysis the deformation law inward to find out how to control the soft-rock deformation. Hence we can know the main influence in the shallow soft-rock tunnel stability. The results are of great importance to the mines that have similar geological conditions.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


Author(s):  
Hongwei Zhou ◽  
Yang Ju ◽  
Heping Xie ◽  
Geng Ma ◽  
Zhengliang Dong ◽  
...  

Author(s):  
Hebing Luan ◽  
Dezhong Kong ◽  
Zhaohui Wang ◽  
Weishun Sun

Sign in / Sign up

Export Citation Format

Share Document