Numerical Simulation Analysis on Deformation Mechanism of Shallow-Buried Soft Rock Roadway

2013 ◽  
Vol 734-737 ◽  
pp. 773-776
Author(s):  
Zhi Chao Tian ◽  
Long Hao Dong ◽  
Ye Jiao Liu

The pressure control of soft-rock and roadway support has been one of the challenges of underground mines. Soft-rock support is very difficult in many places in China and is becoming a kind of main influencing factors in the development and economic of mining community. Numerical simulation research on the deformation mechanism of soft-rock tunnel contributes to the development of soft-rock support theory. The numerical calculation model of shallow buried soft-rock is based on Hongya coalmine; ANSYS is used to analysis the deformation law inward to find out how to control the soft-rock deformation. Hence we can know the main influence in the shallow soft-rock tunnel stability. The results are of great importance to the mines that have similar geological conditions.

Author(s):  
Fangliang Chen ◽  
Kaihua Zeng ◽  
Xuejun Li ◽  
Manqing Xu ◽  
Hongtao Dai

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hong-di Jing ◽  
Yuan-hui Li ◽  
Kun-meng Li

In order to study the deformation mechanism of soft rock roadway in underground mines, it is necessary not only to study the influence of the dynamic disturbance caused by the cyclic mining blasting vibration on the stability of the soft rock roadway but also to study the degradation of the roadway surrounding rock itself and other factors. The paper presented a synthetic research system to investigate the factors that influence roadway rock structure deterioration in Baoguo Iron Mine. Firstly, the stability of rock mass was analyzed from the perspective of the physical and structural characteristics of the rock mass. Afterwards, according to monitoring data of mining blasting vibration, a suitable safety blasting prediction model for Baoguo Iron Mine was determined. And then, combining the results of mining blasting vibration monitoring and deformation monitoring, the effect of cyclic mining blasting on the stability of the soft rock roadway was obtained. By systematically studying the intrinsic factors of rock quality degradation and external environmental disturbances and their interactions, this paper comprehensively explores the deformation mechanism of soft rock roadway and provides the support for fundamentally solving the large deformation problems of soft rock roadway in underground mines.


Author(s):  
Hebing Luan ◽  
Dezhong Kong ◽  
Zhaohui Wang ◽  
Weishun Sun

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Rui Wang ◽  
Yiyuan Liu ◽  
Xianghui Deng ◽  
Yu Zhang ◽  
Xiaodong Huang ◽  
...  

With the rapid development of tunnel construction in China, deep buried and long tunnel projects are emerging in areas with complex engineering geological conditions and harsh environment, and thus large deformation of tunnels under conditions of high in situ stress and soft rock becomes increasingly prominent and endangers engineering safety. Therefore, it is of great significance to control the deformation and improve the stability of surrounding rock by analyzing the thickness and distribution law of loose circle according to the unique mechanical properties and failure mechanism of surrounding rock of large deformation soft-rock tunnel. Based on unified strength theory, this paper deduces the radius calculation formula of the loose circle by considering the influence of intermediate principal stress. Furthermore, the theoretical calculations and field tests of the loose circle in the typical sections of grade II and III deformation of Yuntunbao tunnel are carried out, and the thickness and distribution law of loose circle of surrounding rock of large deformation soft-rock tunnel is revealed. The results show that the formula based on the unified strength criterion is applicable for a large deformation tunnel in soft rock.


2013 ◽  
Vol 438-439 ◽  
pp. 949-953
Author(s):  
Hao Bo Fan ◽  
Jin Xing Lai ◽  
Dan Dan Hou

This paper based on Chaoyang tunnel by bench method excavation, using the finite element numerical simulation method, simulates the surrounding rock displacement of soft rock tunnel and the stress characteristics of supporting structure to get the various stages of tunnel surrounding rock stress, strain and the internal force changes of tunnel supporting structure. After the analyses of the numerical simulation results and field monitoring measurement data, the safety and rationality of the method are determined. The research provides certain reference for highway tunnel design and construction.


2013 ◽  
Vol 353-356 ◽  
pp. 1305-1309
Author(s):  
Yan Jun Liu ◽  
Li Zhen Shen

This article describes the pumping test procedures and test results of the subway project 30m deep excavation dewatering in thick aquifer. A groundwater three-dimensional seepage numerical calculation model is established. We use the model to calculate and compare the calculated results and the actual results, obtain hydrogeological parameters by inversion. Further, we have a numerical simulation study on deep excavation dewatering with the hydrogeological parameters, the Simulation results and excavation pre-dewatering test results are consistent. Test results show that the model can reflect the deep excavation dewatering process with complex geological conditions.


2014 ◽  
Vol 638-640 ◽  
pp. 794-797
Author(s):  
Fei Pan ◽  
Sheng Guo Cheng

With the development of transportation construction, soft rock tunnel with high geostress construction has become a key problem to overcome of traffic engineering construction. In order to explore the deformation mechanism and control technology of soft rock tunnel with high geostress, Xiakou tunnel engineering as an example, the geological characteristics and deformation characteristics of the tunnel were analyzed, to obtain the deformation mechanism of soft rock tunnels with high geostress, and to develop deformation control technology, the results provide a basis and reference for the domestic and foreign the similar engineering construction.


2013 ◽  
Vol 438-439 ◽  
pp. 964-967
Author(s):  
Bin Zhu ◽  
Xiao Jing Shi

With characteristics of the long span and soft rock tunnel, this paper analyzes the main factors affecting tunnel stable on the basis of the way of tunnel excavation method. The large finite element program is used in research of a tunnel, with a numerical simulation of two different way, top heading and bench method and double side drift method. From the result of stress field and displacement field of the tunnel , some useful conclusion are obtained, that double side drift method is appropriate for this kind of soft rock tunnel.


Sign in / Sign up

Export Citation Format

Share Document