scholarly journals Effect of Oil Groove Depth on Friction Performance of Copper based Friction Materials with Different Graphite Content

Author(s):  
Jianhua Du ◽  
Nan Zhang ◽  
Zheng Hu ◽  
Keyan Ning ◽  
Wanhao Zhang ◽  
...  
2011 ◽  
Vol 311-313 ◽  
pp. 473-476
Author(s):  
Jian Hua Du ◽  
Jian Guo Han ◽  
Cheng Fa Xu

The Cu-based friction materials with nano-AlN (n-AlN) and nano-graphite (n-C) were prepared by powder metallurgy technology, respectively. The microstructures and friction performance were studied through scanning electron microscope (SEM) and friction tester rig, respectively. The results indicate that the n-AlN and n-C particles can enhance the properties of Cu-based friction materials remarkably. Compared with the friction materials without any nanometer materials, the wear resistance of the friction materials with n-AlN and n-C has been improved by 25 % and 11 %, respectively. The heat resistance of the materials with n-AlN and n-C has been improved 18 % and 25 %, respectively. The n-AlN and n-C particles can reduce the abrasive wear and enhance the wear resistance of the Cu-based friction materials.


2016 ◽  
Vol 68 (1) ◽  
pp. 92-98 ◽  
Author(s):  
ilker Sugozu ◽  
ibrahim mutlu ◽  
Kezban Banu Sugozu

Purpose – The purpose of this paper is to investigate use of colemanite (C) upon friction and wear performance of automotive brake lining. Brake lining production with the boron product colemanite addition and braking characterization investigated for development of non-asbestos organic (NAO) brake lining because of negative effects on human health and environmental hazard of asbestos containing linings. During the braking, brake lining is warmed up extremely due to friction, and the high temperature causes to decreasing of breaking performance. Colemanite has high melting temperature, and this makes this material valuable for brake lining. Design/methodology/approach – This study investigated the effect of colemanite (C) upon friction and wear performance of automotive brake lining. Based on a simple experimental formulation, different amounts of boron product colemanite were used and then evaluated using a friction assessment and screening test. In these specimens, half of the samples (shown with H indices) were heat treated in 4 h at 180°C temperature. Friction coefficient, wear rate and scanning electron microscope for friction surfaces were used to assess the performance of these samples. Findings – The results of test showed that colemanite can substantially improve properties of friction materials. The friction coefficient of friction materials modified with colemanite varies steadily with the change of temperature, and the wearing rate of friction materials is relatively low by using colemanite. Heat treatment-applied samples (CH) have provided a higher and stable friction coefficient. These results indicate that colemanite has ideal application effect in various friction materials. Originality/value – This paper fulfils an identified information and offers practical help to the industrial firms working with brake lining and also to the academicians working on wear of materials. Parallel results have been presented between previously reported and present study, in view of brake characteristics and wear resistance. Use of the lower cost and productive organic sources of material are the main improvement of the present study.


2014 ◽  
Vol 788 ◽  
pp. 621-626 ◽  
Author(s):  
Jing Dan Wei ◽  
Hua Chen

Cu-based friction materials were prepared by powder metallurgy technology. The effect of the graphite on friction and wear properties of materials was investigated. The experimental results indicate that the wear rate of the materials increased with increasing speed. The wear rate of the materials with the graphite with the size of 300~600μm decreased with increasing graphite content, indicating that the graphite size of 300~600μm showed the good lubricating effect. The lubricating film made the friction coefficient decrease. The wear resistance of materials with 100~300μm graphite was degraded at high graphite content, and the graphite size of 100~300μm has bad effect on the strength of materials. The wear debris made the friction coefficient slightly increase with the increase of graphite content. The material with the graphite content of 10% and the graphite size of 300~600μm has the best friction and wear properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Kuo-Jung Lee ◽  
Mao-Hsiang Hsu ◽  
Huy-Zu Cheng

This research is to investigate the influences of carbon nanotube (CNT) containing friction powder prepared through different process parameters on flexural properties and friction performance of organic brake friction materials. Experimental results indicate significant influence on flexural property and friction performance of organic brake friction materials when the modified CNT/friction powders are adopted. Particularly for the specimens adopted the modified CNT/friction powders prepared through 2.0 M concentration of catalyst and 30% C2H2show the highest flexural strength, better ductility and toughness, most stable friction coefficient, and lowest weight loss. However, too many amorphous carbon clusters and CNTs aggregation derived from higher concentration of catalyst and ratio of C2H2/N2would cause poor formation of specimens and reduction of reinforcement effectiveness.


2011 ◽  
Vol 694 ◽  
pp. 413-417
Author(s):  
Jian Hua Du ◽  
Yan Zang ◽  
Xiao Ying Zhu

The Cu-based friction materials with nano-AlN (n-AlN) particles were prepared by powder metallurgy technology. The friction performance of the friction materials was investigated through test rig. The microstructure and worn morphology were studied through scanning electron microscopy (SEM). The results indicate that the coefficient of the Cu-based friction materials with 0.75 wt % n-AlN is high and stable. Comparing with the traditional friction materials without n-AlN, the wear resistance and heat resistance of the friction materials with n-AlN has been improved by 25 % and 18 %, respectively. The n-AlN particles can reduced the abrasive wear and enhance the wear resistance of the Cu-based friction materials.


2020 ◽  
Vol 1622 ◽  
pp. 012005
Author(s):  
Nan Zhang ◽  
Zheng Hu ◽  
Jianhua Du ◽  
Wanhao Zhang ◽  
Junjiao Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document