Effect of Nano-AlN on the Friction Performance of Cu-Based Friction Material

2011 ◽  
Vol 694 ◽  
pp. 413-417
Author(s):  
Jian Hua Du ◽  
Yan Zang ◽  
Xiao Ying Zhu

The Cu-based friction materials with nano-AlN (n-AlN) particles were prepared by powder metallurgy technology. The friction performance of the friction materials was investigated through test rig. The microstructure and worn morphology were studied through scanning electron microscopy (SEM). The results indicate that the coefficient of the Cu-based friction materials with 0.75 wt % n-AlN is high and stable. Comparing with the traditional friction materials without n-AlN, the wear resistance and heat resistance of the friction materials with n-AlN has been improved by 25 % and 18 %, respectively. The n-AlN particles can reduced the abrasive wear and enhance the wear resistance of the Cu-based friction materials.

2011 ◽  
Vol 311-313 ◽  
pp. 473-476
Author(s):  
Jian Hua Du ◽  
Jian Guo Han ◽  
Cheng Fa Xu

The Cu-based friction materials with nano-AlN (n-AlN) and nano-graphite (n-C) were prepared by powder metallurgy technology, respectively. The microstructures and friction performance were studied through scanning electron microscope (SEM) and friction tester rig, respectively. The results indicate that the n-AlN and n-C particles can enhance the properties of Cu-based friction materials remarkably. Compared with the friction materials without any nanometer materials, the wear resistance of the friction materials with n-AlN and n-C has been improved by 25 % and 11 %, respectively. The heat resistance of the materials with n-AlN and n-C has been improved 18 % and 25 %, respectively. The n-AlN and n-C particles can reduce the abrasive wear and enhance the wear resistance of the Cu-based friction materials.


2011 ◽  
Vol 284-286 ◽  
pp. 905-908 ◽  
Author(s):  
Jian Hua Du ◽  
Yuan Yuan Li ◽  
Xiao Hui Zheng

The Cu-based friction materials with nano-graphite were prepared through powder metallurgy technology. The microstructure and friction performance were studied through scan electronic microscope (SEM) and friction tester, respectively. The results indicate that coefficient of the Cu-based friction materials with 2 wt% nano-graphite is high and stable. Comparing with the friction materials without n-C, the wear resistance and heat resistance of the friction materials with nano-graphite has been improved by 11 % and 25 %, respectively. The nano-graphite particles will reduce the abrasive wear and enhance the wear resistance of the Cu-based friction materials.


2012 ◽  
Vol 184-185 ◽  
pp. 1380-1383
Author(s):  
Yong Ping Niu ◽  
Xiang Yan Li ◽  
Jun Kai Zhang ◽  
Ming Han ◽  
Yong Zhen Zhang

Polybutyl acrylate (PBA) grafted alumina nanoparticles were synthesized. Polytetrafluoroethylene (PTFE) nanocomposites reinforced with PBA grafted nanoparticles were prepared by compression molding. The effects of PBA grafted nanoparticles on the tribological behavior of the PTFE nanocomposites were investigated on a tribometer. The abrasion mechanisms of the PTFE nanocomposites were investigated by scanning electron microscopy (SEM) of the abraded surfaces. The results show that the addition of PBA grafted nanoparticles maintains low friction coefficient and improves the wear resistance of the PTFE nanocomposites.


2009 ◽  
Vol 41 (2) ◽  
pp. 199-207 ◽  
Author(s):  
X. Dong ◽  
J. Hu ◽  
Z. Huang ◽  
H. Wang ◽  
R. Gao ◽  
...  

In this study, the boronized layers were formed on the surfaces of specimens with a composition of Fe-2 wt. % Cu-0.4 wt. % C by sintering and boronizing simultaneously, using a pack boronizing method. The processes were performed in the temperature range of 1050 - 1150 oC at a holding time of 4 hours in 97 % N2 and 3 % H2 atmosphere. Scanning electron microscopy examinations showed that the boronized layers formed on the surface of boronized and sintered specimens have a denticular morphology. The thicknesses of the boronized layers varied from 63 to 208 ?m depending on the processing temperature. The structures of the boronized layers were Fe2B and FeB confirmed by X-ray diffraction analysis. The microhardness values of boronized layers ranged from 1360 to 2066 HV0.3 much higher than that of substrate hardness which was about 186 HV0.3. Wear testing results showed that the wear resistance of the boronized and sintered specimens was significantly improved, resulting from increased surface microhardness.


2012 ◽  
Vol 562-564 ◽  
pp. 204-207
Author(s):  
Dong Wang ◽  
Hui Qin Li ◽  
Han Yu Zhao

In this study, 45 carbon steel was boronized and borosulphurized at 950°C for 2, 3, 4, 5, 6 and 8 h, respectively. The samples were characterized by scanning electron microscopy, optical microscope, microhardness tester and ring-on-block wear tester. It is found that the surface of borosulphurized samples was dense, compact and relatively smooth; Although the boride layers produced by boro- sulphurizing at 950°C showed a lower microhardness value compared with that produced by boronizing, the wear resistance of the borosulphurized carbon steel is higher than that of boronized sample due to formation of FeS phase in the boride layer.


2014 ◽  
Vol 941-944 ◽  
pp. 266-274 ◽  
Author(s):  
Kai Zhou Zhang ◽  
Qiang Guo ◽  
Bang Sheng You

Thermoplastic polyurethane elastomer (TPU) and long glass fiber (LGF) were used to prepare LGF/TPU master batch for increasing the mechanical properties and heat resistance of PVC. It turned out that addition of LGF/TPU contributed to improvement in toughness of PVC but the heat resistance of PVC didn’t increase very evidently. The heat resistance and morphology were observed by vicat test and scanning electron microscopy, respectively. The scanning electron microscopy (SEM) proved that incorporation of LGF/TPU into PVC changed the morphology of the composites and correlated well with the mechanical properties. Dynamic mechanical analysis (DMA) showed that both the glass transition temperature and the storage modulus of PVC increased with the addition of LGF/TPU master batch; the presence of a single Tg indicated that each component of composites was miscible. In this study, the combination properties of the composites with 24wt% LGF was the best proportion in the range of 0-30 phr LGF, because it had the best mechanical properties and heat resistance.


2018 ◽  
Vol 880 ◽  
pp. 241-247
Author(s):  
Claudiu Nicolicescu ◽  
Victor Horia Nicoară ◽  
Costel Silviu Bălulescu

Alloys based on Cu/Cr and Cu/Cr/W attract the attention due to their presence in different applications that require higher electrical properties which are combined with good mechanical properties. In order to synthesis the material based on Cu/Cr and Cu/Cr/W, mechanical alloying technique was used. Four mixtures, X1 (99%CuCr), X2 (97%CuCr), X3 (94%Cu1%CrW), X4 (92%Cu3%CrW – weight percent), were prepared using a vario planetary ball mill Pulverisette 4 made by Fritsch. The mixtures obtained after 10 hours were analyzed by scanning electron microscopy (SEM). It was found that the presence of chromium and tungsten influence the morphology and the particles tend to be flat. Sinter ability and microhardness are influenced by the chemical composition of the samples.


2015 ◽  
Vol 15 (2) ◽  
pp. 239-241
Author(s):  
Mallik Kedar Mantrala ◽  
Srinivasa Rao Ch ◽  
Kesava Rao V. V. S.

AbstractCo-Cr-Mo alloy samples were deposited using arc welding process with optimum parameters of deposition. The samples were tested for their hardness, XRF, wear resistance and microstructures. The results were compared with the laser deposited samples and cast samples from literature. The experimental results revealed that the hardness of the weld deposits was inferior to as-cast samples as well as the laser deposited samples. But the wear resistance of the weld deposited samples was compatible with laser deposited samples. Metal to metal contact Pin on Disc wear resistance test was conducted. The XRF results were in agreement with results of as-cast samples. Scanning electron microscopy was used for microstructure analysis. Thorough investigation was made to compare the microstructures of the weld deposits with laser deposited and as-cast Co-Cr-Mo alloy samples.


2008 ◽  
Vol 569 ◽  
pp. 125-128
Author(s):  
Peng Xiao ◽  
Zhi Kang Fan

The Cu20W70Cr10 composites were fabricated by two methods which are the conventional powder metallurgy, and mechanical alloying to prepare WCr compound powders, followed by sintering and infiltration. The erosion behavior of CuWCr composites under breakdown was investigated. The surfaces of the composites before and after erosion and the mechanism of arc erosion were studied by scanning electron microscopy. The results show that the CuWCr composites prepared by mechanical alloying have superfine microstructure, uniform composition and high density, thus result in good characteristics of diffusing arcs and arc eroding endurance. Arc erosion zones are dispersive and uniform on the surfaces with some flat eroding pits. The Cu20W70Cr10 composites have excellent electrical properties such as high breakdown voltage, low chopping current and long arc life.


2014 ◽  
Vol 802 ◽  
pp. 102-107 ◽  
Author(s):  
Oscar Olimpio de Araújo Filho ◽  
Rodrigo Tecchio Antonello ◽  
Cezar Henrique Gonzalez ◽  
Severino Leopoldino Urtiga Filho ◽  
Francisco Ambrozio Filho

High speed steels processed by Powder Metallurgy (PM) techniques present better mechanical properties when compared with similar steels obtained by the conventional process of cast to ingot and hot working. PM techniques produce improved microstructures with smaller and better distribution of carbides. Liquid phase sintering high speed steel seems to be a cheaper processing route in the manufacturing of tool steels if compared to the well-known and expansive hot isostatic pressing high speed steels. The introduction of niobium as alloying element began with the object of replacing elements like vanadium (V) and tungsten (W). Phase liquid sintering consists in a manufacturing technique to process high speed steels by powder metallurgy. The aim of this work of research is to process and obtain AISI M2 and M3:2 with and without the addition of niobium carbide by high energy milling, cold uniaxial compaction and vacuum sintering in the presence of a liquid phase. The powders of the AISI M2 and M3:2 were processed by high energy milling adding a small quantity of niobium carbide (6% in mass), then the powders were characterized by means of X-ray diffraction (XRD) and scanning electron Microscopy (SEM) plus energy dispersion spectroscopy (EDS) in order to evaluate the milling process. The powders of the AISI M2 and M3:2 with the addition of niobium carbide (NbC) were uniaxially cold compacted and then submitted to vacuum sintering. The sintered samples had their microstructure, porosity and carbide distribution observed and evaluated by means of Scanning Electron Microscopy (SEM) and the mechanical property of hardness was investigated by means of Vickers hardness tests. At least five samples of each steel were investigated.


Sign in / Sign up

Export Citation Format

Share Document