scholarly journals Effect of Fly Ash Content on Properties of Fibre Reinforced Cementitious Composites

Author(s):  
Baoying Yu ◽  
Jianwei Zhou ◽  
Yaning Kong ◽  
Yuxin Gao ◽  
Wen Yang ◽  
...  
2017 ◽  
Vol 149 ◽  
pp. 103-110 ◽  
Author(s):  
Chang Lin ◽  
Obada Kayali ◽  
Evgeny V. Morozov ◽  
David J. Sharp

Author(s):  
Hassan Noorvand ◽  
Gabriel Arce ◽  
Marwa Hassan ◽  
Tyson Rupnow ◽  
Louay N. Mohammad

Engineered cementitious composites (ECCs) are a type of micromechanically-designed cementitious composite reinforced with a moderate volume fraction of short fiber, typically 2% by volume. ECCs form steady-state multiple cracking that considerably improves the tensile strength and ductility of traditional concrete. In this study, the properties of matrix and the interface of ECCs were tailored through the use of crumb rubber, different types of sand, and different replacement levels of cement with fly ash. The study examined the effect of sand replacement with crumb rubber (20% by volume), two types of river sands (coarse and fine), increasing the content of class F fly ash (up to 75% cement replacement), and low fiber content (1.75%) on the mechanical properties of ECCs. Compressive strength, uniaxial tensile, and third-point bending tests were performed to characterize the properties of ECC mixes. Experimental results demonstrated that increasing fly ash content and using crumb rubber favored ductility of the composites. However, higher fly ash contents and a low water-to-binder (W/B) ratio produced lower strengths as these limited the pozzolanic reaction of fly ash making it act partially as a filler. While incorporation of crumb rubber showed adverse effects on the tensile strength of ECC materials (up to 26% decrease), the tensile ductility of ECC materials improved significantly (up to 434% improvement). Moreover, the implementation of different types of sand produced minor effects on the mechanical properties of ECCs. Overall, a tradeoff between the strength and ductility of the composites was detected, which highlights the implications of matrix/interface tailoring in the overall performance of ECC.


2021 ◽  
Author(s):  
Shirin Ahmad

This research investigates the effect of fatigue loading on the flexural performance and self-healing behaviour of beams and link slabs made of Engineered Cementitious Composites (ECC). The influences of fly ash content, types/size of sand, MgO agent, fatigue stress level/cycle and age are analyzed based on strength/deflection capacity recovery and residual strength/deflection/energy absorbing capacity. The deflection evolution rate and energy absorption capacity were much higher in ECC link slabs compared to their SCC counterparts. Higher energy absorption and deflection evolution rate were observed in mortar sand based ECC specimens during fatigue loading. ECC link slabs with mortar sand having 55% fly ash content have shown the best self-healing and fatigue performance attaining high residual strength, deflection and energy absorbing capacity of up to 98.3%, 95.4% and 97.1% of control specimens, respectively besides retaining multi-cracking characteristics. This research demonstrates viability of using ECC link slab for construction of joint-free bridges.


2021 ◽  
Author(s):  
Shirin Ahmad

This research investigates the effect of fatigue loading on the flexural performance and self-healing behaviour of beams and link slabs made of Engineered Cementitious Composites (ECC). The influences of fly ash content, types/size of sand, MgO agent, fatigue stress level/cycle and age are analyzed based on strength/deflection capacity recovery and residual strength/deflection/energy absorbing capacity. The deflection evolution rate and energy absorption capacity were much higher in ECC link slabs compared to their SCC counterparts. Higher energy absorption and deflection evolution rate were observed in mortar sand based ECC specimens during fatigue loading. ECC link slabs with mortar sand having 55% fly ash content have shown the best self-healing and fatigue performance attaining high residual strength, deflection and energy absorbing capacity of up to 98.3%, 95.4% and 97.1% of control specimens, respectively besides retaining multi-cracking characteristics. This research demonstrates viability of using ECC link slab for construction of joint-free bridges.


2018 ◽  
Vol 69 (8) ◽  
pp. 2040-2044
Author(s):  
Georgeta Velciu ◽  
Virgil Marinescu ◽  
Adriana Moanta ◽  
Ladislau Radermacher ◽  
Adriana Mariana Bors

The influence of fly ash adittion (90 % fraction [ 100 mm) on the cement mortar characteristics was studied. The XRD, XRF, SEM and FTIR determinations indicated that fly ash used has a hollow microstructure of microsphere and cenosphere whose total content in SiO2, Al2O3 and Fe2O3 is 88.63 % and that of CaO and MgO of 8.55 %. The mechanical, thermal and dielectric determinations made on mortar samples with content of fly ash in the 0-40 % range have highlighted fact that the mechanical strength of cement mortars is maximal at 20 %, the increase in fly ash content leads to a decrease in relative density and thermal conductivity as well as and to increased dielectric losses tgd.


2014 ◽  
Vol 875-877 ◽  
pp. 177-182 ◽  
Author(s):  
Xiang Li ◽  
Hua Quan Yang ◽  
Ming Xia Li

The hydration degree of fly ash and the calcium hydroxide (CH) content were measured. Combined with the equilibrium calculation of cement hydration, a new method for assessment of the hydration degree of cement in the fly ash-cement (FC) pastes based on the CH content was developed. The results reveal that as the fly ash content increase, the hydration degree of fly ash and the CH content decrease gradually; at the same time, the hydration degree of cement increase. The hydration degree of cement in the FC pastes containing a high content of fly ash (more than 35%) at 360 days is as high as 80%, even some of which hydrates nearly completely. The effect of water-cement ratio to the hydration degree of cement in the FC pastes is far less distinct than that of the content of fly ash.


2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


Sign in / Sign up

Export Citation Format

Share Document