scholarly journals Hydrogeochemistry and Hydrogeological Model of CO2-rich Springs on Buryatia Territory (Russia)

2021 ◽  
Vol 720 (1) ◽  
pp. 012012
Author(s):  
N A Kharitonova ◽  
A V Aseeva ◽  
D D Lukanov
2019 ◽  
Vol 98 ◽  
pp. 07013
Author(s):  
Thomas Kretzschmar ◽  
Matteo Lelli ◽  
Ruth Alfaro ◽  
Juan Ignacio Sanchez ◽  
Yann Rene Ramos

It is important to develop a regional hydrogeological model to identify possible recharge and discharge areas for a sustainable use of a geothermal reservoir. The Los Humeros geothermal area is situated within five surficial watersheds and coveres an area of more than 15.000 km2. A total of 208 well and spring samples were collected between June 2017 and November 2018. The stable isotope data for this region define a regression line of δDH2O = 8.032·δ18O + 12 and indicate that groundwater is recharged by regional precipitation. At least 39 groundwater wells, with a maximum temperature of 35 °C, show temperatures above the reported mean average surface temperature of 15 °C. Characteristic elements for geothermal reservoir fluids (B, Li, As) are also present in these groundwaters, indicating a possible connection between the reservoir fluid and the local groundwater through local fracture systems. Concentration of B in these hot wells is between 150 and 35000 ppb.


Author(s):  
K. Ya. Bulakhova ◽  
S. M. Sudarikov

The results of hydrogeochemical monitoring of the Sarmat-Meotis-Pontic sediments aquifer complex of the North Sivash artesian basin have been analyzed. The analysis based on a routine observations for 16 producing wells. The observations were made in the period from 2014 to 2017 years. A correlation and regression analysis has been made for definition of dependencies between changes in the concentrations of the normalized components. The results obtained allow us to evaluate the main factors of formation of the chemical composition of groundwater. At the present stage, metamorphosed waters are pulled up from the lower strata of the complex, that leads to an increase in the amount of mineralization. The formation of sulphate waters is primarily associated with the peculiarities of the geological structure, namely, the high gypsum content of quaternary deposits and the presence of hydraulic connection with the overlying aquifers. One of the reasons for the formation of sulphate waters is the anthropogenic impact associated with the close location of the acid accumulator containing sulfur tailing. The results obtained allow us to proceed to the next stage of the survey — the creation of a natural hydrogeological model of the research area and the carrying of the thermodynamic modeling.


2021 ◽  
Vol 82 (3) ◽  
pp. 219-221
Author(s):  
Sava Kolev

Radon gas has high mobility and is driven by advection and diffusion with the soil gas throughout connected and water-unsaturated pores and/or cracks in permeable rocks and soils. Hence the radon potential of the area could be dependent on not only geology as a constant source of radon but also from the changes of the saturation state of the ground. The loess complex, characterized by its permeability and usual state of unsaturation, covers 10% of the Bulgarian territory. The study deals with the principles of unsaturated domain modeling. An attempt of generic vertical infiltration model coinciding with the most upper part of loess vadose zone was performed.


2015 ◽  
Vol 53 ◽  
pp. 12 ◽  
Author(s):  
Aivars Spalvins ◽  
Janis Slangens ◽  
Inta Lace ◽  
Olgerts Aleksans ◽  
Kaspars Krauklis ◽  
...  

2012 ◽  
Vol 9 (4) ◽  
pp. 5085-5119 ◽  
Author(s):  
T. Burschil ◽  
W. Scheer ◽  
R. Kirsch ◽  
H. Wiederhold

Abstract. We present the application of geophysical investigations to characterise and improve the geological/hydrogeological model through the estimation of petrophysical parameters for groundwater modelling. Seismic reflection and airborne electromagnetic surveys in combination with borehole information enhance the 3-D geological model and allow a petrophysical interpretation of the subsurface. The North Sea Island of Föhr has a very complex underground structure what was already known from boreholes. The local waterworks use a freshwater body embedded in saline groundwater. Several glaciations disordered the Youngest Tertiary and Quaternary sediments by glaciotectonic thrust-faulting as well as incision and refill of glacial valleys. Both underground structures have a strong impact on the distribution of freshwater bearing aquifers. An initial hydrogeological model of Föhr was built from borehole data alone and was restricted to the southern part of the island where in the sandy areas of the Geest a large freshwater body was formed. We improved the geological/hydrogeological model by adding data from different geophysical methods, e.g. airborne electromagnetics (EM) for mapping the resistivity of the entire island, seismic reflections for detailed cross sections in the groundwater catchment area, and geophysical borehole logging for calibration of these measurements. An integrated evaluation of the results from the different geophysical methods yields reliable data. To determinate petrophysical parameter about 18 borehole logs, more than 75 m deep, and nearby airborne EM inversion models were analyzed concerning resistivity. We establish an empirical relation between measured resistivity and hydraulic conductivity for the specific area – the North Sea island of Föhr. Five boreholes concerning seismic interval velocities discriminate sand and till. The interpretation of these data was the basis for building the geological/hydrogeological 3-D model. We fitted the relevant model layers to all geophysical and geological data and created a consistent 3-D model. This model is the fundament for groundwater simulations considering forecasted changes in precipitation and sea level rise due to climate change.


2021 ◽  
pp. 17-34
Author(s):  
Yu.F. Rudenko ◽  
V.M. Shestopalov ◽  
Iu.A. Negoda ◽  
O.V. Gural

Extraction of minerals significantly affects the hydrogeological conditions of the environment. Active development of mining operations in the Donbas region determined the dominant influence of technogenic changes in geological environment on the formation of modern ecological conditions in the region. This applies not only to coal mining but also raw materials extraction (dolomites, limestone) for metallurgical plants mostly by quarrying. Recently, a significant environmental problem in the region has been the mines and quarries closure, envisaged by the program for restructuring the coal industry of Ukraine. Closure of mines or quarries through wet-based conservation is the least financially expensive, although it significantly increases the technogenic load on the natural environment. The object of research involved groundwater and surface water within the area of the Stylskyi and Skhidnyi (Vostochnyi) quarries of the “Dokuchaevsk flux-dolomite complex” PJSC, as well as Kipucha Krynytsa and Shevchenkivskyi water intake structures. The goal of research was to forecast changes in the hydrogeological conditions under the influence of wet-based conservation of the Stylskyi quarry. To achieve this goal, hydrogeological methods, mathematical modelling, and expert assessments were used. Consequently, a hydrogeological model of the research area was created, its functional correspondence to the natural-anthropogenic conditions was confirmed, and calculation hydrogeological parameters were specified. As a result, the forecast of changes in the hydrogeological conditions under the influence of wet-based conservation of the Stylskyi quarry was made. In particular, the following issues were determined: the dynamics of quarry flooding; the influence of this process on changes in water inflows to the Skhidnyi (Vostochnyi) quarry, Kipucha Krynytsa and Shevchenkivskyi water intake structures; possible flooding of settlements and swamping of the research area; changes in chemical composition and groundwater salinity; time of quarry draining at various intensity of water outflow to resume mineral production in case of need. We would like to emphasize that the forecasts made should be used when designing partial or full flooding of the Stylskyi quarry.


Sign in / Sign up

Export Citation Format

Share Document