scholarly journals Study on the Influence and Correction of Spatial Heterogeneity of Air Temperature in Drought Remote Sensing Monitoring

2021 ◽  
Vol 734 (1) ◽  
pp. 012016
Author(s):  
Rui Zhang ◽  
Hongjun Li
2021 ◽  
Vol 13 (15) ◽  
pp. 2949
Author(s):  
Tianyi Cai ◽  
Xinhuan Zhang ◽  
Fuqiang Xia ◽  
Zhiping Zhang ◽  
Jingjing Yin ◽  
...  

The center of gravity of China’s new cropland has shifted from Northeast China to the Xinjiang oasis areas where the ecological environment is relatively fragile. However, we currently face a lack of a comprehensive review of the cropland expansion in oasis areas of Xinjiang, which is importantly associated with the sustainable use of cropland, social stability and oasis ecological security. In this study, the land use remote sensing monitoring data in 1990, 2000, 2010 and 2018 were used to comprehensively analyze the process characteristics, different modes and driving mechanisms of the cropland expansion in Xinjiang, as well as its spatial heterogeneity at the oasis area level. The results revealed that cropland in Xinjiang continued to expand from 5803 thousand hectares in 1990 to 8939 thousand hectares in 2018 and experienced three stages of expansion: steady expansion, rapid expansion, and slow expansion. The center of gravity of cropland showed the characteristic of shifting to the South. Edge expansion and encroachment on grassland were the dominant spatial pattern mode and land use conversion mode of Xinjiang’s cropland expansion, respectively. The expansion of cropland in Xinjiang was affected by multiple factors. Irrigation conditions played a dominant role. Topography indirectly affected cropland expansion by affecting the suitability of agricultural production and development. Population growth and farmers’ income were important driving forces. There was significant spatial heterogeneity in the intensity, mode and driving force of cropland expansion among different oasis areas in Xinjiang. The spatial shift of China’s new cropland has occupied a large amount of water resources and ecological land in Xinjiang and exacerbated the vulnerability of the ecosystem in arid regions. The key to sustainable management of cropland in Xinjiang in the future lies in maintaining an appropriate scale of cropland and promoting the coordinated development of cropland, population, water resources and industry.


2011 ◽  
Vol 13 (5) ◽  
pp. 679-686
Author(s):  
Zhiqi QIAN ◽  
Youjing ZHANG ◽  
Shizan DENG ◽  
Yingying FANG ◽  
Chen CHEN

2020 ◽  
Vol 13 (1) ◽  
pp. 113
Author(s):  
Antonio-Juan Collados-Lara ◽  
Steven R. Fassnacht ◽  
Eulogio Pardo-Igúzquiza ◽  
David Pulido-Velazquez

There is necessity of considering air temperature to simulate the hydrology and management within water resources systems. In many cases, a big issue is considering the scarcity of data due to poor accessibility and limited funds. This paper proposes a methodology to obtain high resolution air temperature fields by combining scarce point measurements with elevation data and land surface temperature (LST) data from remote sensing. The available station data (SNOTEL stations) are sparse at Rocky Mountain National Park, necessitating the inclusion of correlated and well-sampled variables to assess the spatial variability of air temperature. Different geostatistical approaches and weighted solutions thereof were employed to obtain air temperature fields. These estimates were compared with two relatively direct solutions, the LST (MODIS) and a lapse rate-based interpolation technique. The methodology was evaluated using data from different seasons. The performance of the techniques was assessed through a cross validation experiment. In both cases, the weighted kriging with external drift solution (considering LST and elevation) showed the best results, with a mean squared error of 3.7 and 3.6 °C2 for the application and validation, respectively.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 130
Author(s):  
Sebastian Rößler ◽  
Marius S. Witt ◽  
Jaakko Ikonen ◽  
Ian A. Brown ◽  
Andreas J. Dietz

The boreal winter 2019/2020 was very irregular in Europe. While there was very little snow in Central Europe, the opposite was the case in northern Fenno-Scandia, particularly in the Arctic. The snow cover was more persistent here and its rapid melting led to flooding in many places. Since the last severe spring floods occurred in the region in 2018, this raises the question of whether more frequent occurrences can be expected in the future. To assess the variability of snowmelt related flooding we used snow cover maps (derived from the DLR’s Global SnowPack MODIS snow product) and freely available data on runoff, precipitation, and air temperature in eight unregulated river catchment areas. A trend analysis (Mann-Kendall test) was carried out to assess the development of the parameters, and the interdependencies of the parameters were examined with a correlation analysis. Finally, a simple snowmelt runoff model was tested for its applicability to this region. We noticed an extraordinary variability in the duration of snow cover. If this extends well into spring, rapid air temperature increases leads to enhanced thawing. According to the last flood years 2005, 2010, 2018, and 2020, we were able to differentiate between four synoptic flood types based on their special hydrometeorological and snow situation and simulate them with the snowmelt runoff model (SRM).


2020 ◽  
Vol 13 (1) ◽  
pp. 86
Author(s):  
Yi Ma ◽  
Qi Jiang ◽  
Xianting Wu ◽  
Renshan Zhu ◽  
Yan Gong ◽  
...  

Accurate monitoring of hybrid rice phenology (RP) is crucial for breeding rice cultivars and controlling fertilizing amount. The aim of this study is to monitor the exact date of hybrid rice initial heading stage (IHSDAS) based on low-altitude remote sensing data and analyze the influence factors of RP. In this study, six field experiments were conducted in Ezhou city and Lingshui city from 2016 to 2019, which involved different rice cultivars and nitrogen rates. Three low-altitude remote sensing platforms were used to collect rice canopy reflectance. Firstly, we compared the performance of normalized difference vegetation index (NDVI) and red edge chlorophyll index (CIred edge) for monitoring RP. Secondly, double logistic function (DLF), asymmetric gauss function (AGF), and symmetric gauss function (SGF) were used to fit time-series CIred edge for acquiring phenological curves (PC), the feature: maximum curvature (MC) of PC was extracted to monitor IHSDAS. Finally, we analyzed the influence of rice cultivars, N rates, and air temperature on RP. The results indicated that CIred edge was more appropriate than NDVI for monitoring RP without saturation problem. Compared with DLF and AGF, SGF could fit CIred edge without over fitting problem. MC of SGF_CIred edge from all three platforms showed good performance in monitoring IHSDAS with good robustness, R2 varied between 0.82 and 0.95, RMSE ranged from 2.31 to 3.81. In addition, the results demonstrated that high air temperature might cause a decrease of IHSDAS, and the growth process of rice was delayed when more nitrogen fertilizer was applied before IHSDAS. This study illustrated that low-altitude remote sensing technology could be used for monitoring field-scale hybrid rice IHSDAS accurately.


Sign in / Sign up

Export Citation Format

Share Document