scholarly journals Thermal Comfort Analysis of Residential Home in Coastal City Based on Physiological Equivalent Temperature (PET) Index and Operative Temperature Zone

2021 ◽  
Vol 738 (1) ◽  
pp. 012004
Author(s):  
Qurrotul A’yun ◽  
Riky Tri Yunardi ◽  
Satrio A. N. Rizqillah ◽  
Ucik N. Hidayati
2019 ◽  
Vol 40 (05) ◽  
pp. 312-316 ◽  
Author(s):  
Eric Carlström ◽  
Mats Borjesson ◽  
Gunnar Palm ◽  
Amir Khorram-Manesh ◽  
Fredrik Lindberg ◽  
...  

AbstractThe aim was to analyze the influence of weather conditions on medical emergencies in a half-marathon, specifically by evaluating its relation to the number of non-finishers, ambulance-required assistances, and collapses in need of ambulance as well as looking at the location of such emergencies on the race course. Seven years of data from the world’s largest half marathon were used. Meteorological data were obtained from a nearby weather station, and the Physiological Equivalent Temperature (PET) index was used as a measure of general weather conditions. Of the 315,919 race starters, 104 runners out of the 140 ambulance-required assistances needed ambulance services due to collapses. Maximum air temperature and PET significantly co-variated with ambulance-required assistances, collapses, and non-finishers (R2=0.65–0.92; p=0.001–0.03). When air temperatures vary between 15–29°C, an increase of 1°C results in an increase of 2.5 (0.008/1000) ambulance-required assistances, 2.5 (0.008/1000) collapses (needing ambulance services), and 107 (0.34/1000) non-finishers. The results also indicate that when the daily maximum PET varies between 18–35°C, an increase of 1°C PET results in an increase of 1.8 collapses (0.006/1000) needing ambulance services and 66 non-finishers (0.21/1000).


2016 ◽  
Vol 1 (1) ◽  
pp. 348
Author(s):  
Nooriati Taib ◽  
Zalila Ali

One passive approach that can significantly reduce energy usage in high-rise buildings is through the creation of non-air conditioned spaces such as transitional spaces. Optimizing passive design would reduce wastage associated with the building’s energy consumption. The study measures the thermal comfort of three types of transitional spaces (sky court, balcony, and rooftop) in a high-rise office building. Based on the assessment of Physiological Equivalent Temperature (PET), the outcome showed significant differences in PET in all locations in both wet and dry season. The effectiveness of such area can be improved with the contributions of landscape, maximizing natural ventilation and day lighting where possible.© 2016. The Authors. Published for AMER ABRA by e-International Publishing House, Ltd., UK. Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies, Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.Keywords: Thermal comfort; transitional spaces; high-rise; Physiological Equivalent Temperature


Author(s):  
Nurnida Elmira Othman ◽  
Sheikh Ahmad Zaki ◽  
Nurul Huda Ahmad ◽  
Azli Razak

The present study is intended to evaluate an outdoor thermal comfort at two universities campus in Malaysia. Field measurement and questionnaire survey were conducted simultaneously to assess the microclimatic condition and pedestrian thermal sensation. A total of 3033 samples were collected at seven different sky view factor (SVF) values that range from 0.2 to 0.9. The physiological equivalent temperature (PET) was estimated to evaluate outdoor thermal comfort. It was observed that at a highly shaded area (SVF < 0.35) the respondent’s thermal sensation vote (TSV) are neutral (> 25%), acceptable for thermal acceptance vote (TAV) (> 50%) and no change (> 50%) for thermal preference vote (TPV). For moderate shaded (0.35 ≤ SVF ≤ 0.70) TSV was voted as hot (> 25%), acceptable for TAV (40%), and prefer slightly cooler for TPV (>50%). For less shaded area (0.70 < SVF ≤ 1), TSV was voted as hot and very hot (> 25%), acceptable for TAV (>40%) and prefer slightly cooler for TPV (> 40%). Moreover, the PET value increases simultaneously with the increase of SVF. Results thus suggest that at any given activities such as sitting, walking, and standing also caused effects slightly on the way people thermally perceive it during the on-campus daytime.


2020 ◽  
pp. bjsports-2019-100632 ◽  
Author(s):  
Sofia Thorsson ◽  
David Rayner ◽  
Gunnar Palm ◽  
Fredrik Lindberg ◽  
Eric Carlström ◽  
...  

BackgroundThe Wet-Bulb Globe Temperature (WBGT) index is a common tool to screen for heat stress for sporting events. However, the index has a number of limitations. Rational indices, such as the physiological equivalent temperature (PET) and Universal Thermal Climate Index (UTCI), are potential alternatives.AimTo identify the thermal index that best predicts ambulance-required assistances and collapses during a city half marathon.MethodsEight years (2010–2017) of meteorological and ambulance transport data, including medical records, from Gothenburg’s half-marathon were used to analyse associations between WBGT, PET and UTCI and the rates of ambulance-required assistances and collapses. All associations were evaluated by Monte-Carlo simulations and leave-one-out-cross-validation.ResultsThe PET index showed the strongest correlation with both the rate of ambulance-required assistances (R2=0.72, p=0.008) and collapses (R2=0.71, p=0.008), followed by the UTCI (R2=0.64, p=0.017; R2=0.64, p=0.017) whereas the WBGT index showed substantially poorer correlations (R2=0.56, p=0.031; R2=0.56, p=0.033). PET stages of stress, match the rates of collapses better that the WBGT flag colour warning. Compared with the PET, the WBGT underestimates heat stress, especially at high radiant heat load. The rate of collapses increases with increasing heat stress; large increase from the day before the race seems to have an impact of the rate of collapses.ConclusionWe contend that the PET is a better predictor of collapses during a half marathon than the WBGT. We call for further investigation of PET as a screening tool alongside WBGT.


2016 ◽  
Vol 20 (suppl. 5) ◽  
pp. 1531-1539 ◽  
Author(s):  
Ivana Bogdanovic-Protic ◽  
Ana Vukadinovic ◽  
Jasmina Radosavljevic ◽  
Meysam Alizamirc ◽  
Mihajlo Mitkovic

Outdoor thermal environment is affected by variables like air temperature, wind velocity, humidity, temperature of the radiant surfaces, and solar radiation, which can be expressed by a single number - the thermal index. Since these variables are subject to annual and diurnal variations, prediction of thermal comfort is of special importance for people to plan their outdoor activities. The purpose of this research was to develop and apply the extreme learning machine for forecasting physiological equivalent temperature values. The results of the extreme learning machine model were compared with genetic programming and artificial neural network. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. According to obtained results, it can be concluded that extreme learning machine can be utilized effectively in short term forecasting of physiological equivalent temperature.


MAUSAM ◽  
2021 ◽  
Vol 72 (4) ◽  
pp. 915-934
Author(s):  
MANASI DESAI ◽  
ASHISH NAVALE ◽  
AMIT G. DHORDE

In the present study, trends in heat stress during summer and monsoon season months were assessed for two cities, Pune and Mumbai, for the period of 47 years from 1969 to2015 with the application of empirically derived Heat Index (HI) and rational heat balance based Physiological Equivalent Temperature (PET) index. A stepwise multiple regression analysis was applied to determine contributing meteorological parameters responsible for changes in heat stress incidences. The study reveals a considerable increase in heat stress during the summer months over Mumbai compared to Pune city. Similarly, during the end months of monsoon season, thermal discomfort conditions aggravate over both the cities, with statistically significant rising trends. The actual identification and categorization of thermally discomfortable days during the study period in accordance with the Heat Index were moderate. They remained consistent in Pune during summer, however, in monsoon, heat stress incidences were meager. While at Mumbai days with 'High' and 'Very High,' heat stress have increased towards recent years. Categorization according to PET index depicted conspicuous presence of 'Strong' and 'Extreme heat stress' at Pune, while at Mumbai, 'Warm' and 'Hot' days portrayeda slight increase.  The assessment of meteorological parameters depicted that increased humidity and temperature were the main concern for the increase in heat stress over Mumbai. In contrast, mean radiant temperature, ambient air temperature with restricted wind speed leading to high sensible heat may be responsible for the significant increasing trend in PET. The study infers that both the cities are vulnerable to escalating heat stress and may have adverse implications on the health of city dwellers. 


Author(s):  
Golnoosh Manteghi

Season plays a key role in the development of outdoor spaces for pedestrians in hot humid cities. This research studies the influence of seasonal variations on pedestrian thermal comfort on the pedestrian level by means of meteorology and field observations of selected footpaths in the major tourist area of Malacca. This experiment was carried out on selected clear calm days indicative of each season during the development of a research project, and hourly meteorological transects from 10:00 am to 6:00 pm and questioned 200 respondents on their thermal awareness, comfort, and preferences were conducted. Adaptation, thermal comfort vote, thermal preference, age, season and hour of the day were significant non-meteorological factors, apart from meteorological information. The findings of analyzes showed that the thermal experience and expectation existed and in different seasons people changed perceptions for the outside thermal environment. Almost 80% local tourist and 55 % international tourist was accepted Physiologically Equivalent Temperature (PET) range affected by the local climate and thermal adaptation. The subjective thermal sensation on physiological equivalent temperature generated an acceptable physiological equivalent temperature of 32.6&deg;C to 36.8&deg;C based on the seasonal variations for Malacca tourist zone in Malaysia. These findings shed light on the optimal design of outdoor spaces for increasing the utilization rate. The seasonal variation must be taken into account so that the outdoor landscape design provides more opportunities for different seasons to communicate with the atmosphere and so enhance thermal comfort and utilization.


2019 ◽  
Vol 11 (22) ◽  
pp. 6509
Author(s):  
Hong Jin ◽  
Bo Wang ◽  
Bingbing Han

Overwhelming evidence shows that the harsh climate conditions are affecting urban residents who are living in severe cold areas of China in winter, particularly affecting the frequency and length of outdoor space usage of the elderly. This study aims (1) to establish the modified model which is suitable for the harsh climate region, (2) to verify whether the physiological equivalent temperature (PET) index can be evaluated for the outdoor thermal comfort of older adults in severe cold areas of China in winter, (3) to draw the thermal comfort map that is based on the former conclusions. In this study, the outdoor environments in typical residential areas for the elderly of Changchun, China, has been investigated by using field measurement, questionnaire survey, and Computational Fluid Dynamics (CFD) simulation. The results show that the wind direction is the important aspects of model modification and quite possibly one of the most neglected. In addition, it is convenient to evaluate outdoor thermal comfort of the elderly on the basis of the PET index and the neutral PET temperature of elderly people who live in severe cold areas of China in winter is −0.5 degrees Celsius. According to the thermal comfort map, the park green land of urban residential is the best area for the elderly.


Sign in / Sign up

Export Citation Format

Share Document