scholarly journals Effect of Acridine Orange in Promoting Growth and Physiological Characteristics of Fragaria Ananassa Duch Under Salinity Stress in Vitro

2021 ◽  
Vol 761 (1) ◽  
pp. 012048
Author(s):  
Y. S. Sekhi ◽  
R. M. Hamad ◽  
S. I. Neamah
Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


2016 ◽  
Vol 48 (1) ◽  
pp. 26-33
Author(s):  
O.V. Subin ◽  
◽  
M.D. Melnychuk ◽  
A.F. Likhanov ◽  
O.L. Klyachenko ◽  
...  

2021 ◽  
Vol 9 (8) ◽  
pp. 1588
Author(s):  
Anastasia Venieraki ◽  
Styliani N. Chorianopoulou ◽  
Panagiotis Katinakis ◽  
Dimitris L. Bouranis

Plant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to Pseudomonas and Bacillus genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight. The selected bacterial strains were further evaluated for PGP attributes associated with biofilm formation, compatibility, salt tolerance ability and effect on plant growth. In vitro studies demonstrated that the multi-trait isolates, Bacillus (1.SG.7, 5.SG.3) and Pseudomonas (2.SG.20, 2.C.19) strains, enhanced the lateral roots abundance and shoots biomass, mitigated salinity stress, suggesting the utility of beneficial ARS-producing bacteria as potential microbial fertilizers. Furthermore, in vitro studies demonstrated that compatible combinations of multi-trait isolates, Bacillus sp. 1.SG.7 in a mixture coupled with 5.SG.3, and 2.C.19 with 5.SG.3 belonging to Bacillus and Pseudomonas, respectively, may enhance plant growth as compared to single inoculants.


2019 ◽  
Vol 22 (4) ◽  
pp. 201-205
Author(s):  
Dikayani . ◽  
Anas . ◽  
Anne Nuraini ◽  
Warid Ali Qosim

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1626
Author(s):  
Ibrahim Bayoumi Abdel-Farid ◽  
Marwa Radawy Marghany ◽  
Mohamed Mahmoud Rowezek ◽  
Mohamed Gabr Sheded

Seeds germination and seedlings growth of Cucumis sativus and Solanum lycopersicum were monitored in in vitro and in vivo experiments after application of different concentrations of NaCl (25, 50, 100 and 200 mM). Photosynthetic pigments content and the biochemical responses of C. sativus and S. lycopersicum were assessed. Salinity stress slightly delayed the seeds germination rate and significantly reduced the percentage of germination as well as shoot length under the highest salt concentration (200 mM) in cucumber. Furthermore, root length was decreased significantly in all treatments. Whereas, in tomato, a prominent delay in seeds germination rate, the germination percentage and seedlings growth (shoot and root lengths) were significantly influenced under all concentrations of NaCl. Fresh and dry weights were reduced prominently in tomato compared to cucumber. Photosynthetic pigments content was reduced but with pronounced decreasing in tomato compared to cucumber. Secondary metabolites profiling in both plants under stress was varied from tomato to cucumber. The content of saponins, proline and total antioxidant capacity was reduced more prominently in tomato as compared to cucumber. On the other hand, the content of phenolics and flavonoids was increased in both plants with pronounced increase in tomato particularly under the highest level of salinity stress. The metabolomic profiling in stressful plants was significantly influenced by salinity stress and some bioactive secondary metabolites was enhanced in both cucumber and tomato plants. The enhancement of secondary metabolites under salinity stress may explain the tolerance and sensitivity of cucumber and tomato under salinity stress. The metabolomic evaluation combined with multivariate data analysis revealed a similar mechanism of action of plants to mediate stress, with variant level of this response in both plant species. Based on these results, the effect of salinity stress on seeds germination, seedlings growth and metabolomic content of plants was discussed in terms of tolerance and sensitivity of plants to salinity stress.


Sign in / Sign up

Export Citation Format

Share Document