Computer Aided Modeling Design of External Gear Pump

2021 ◽  
Vol 769 (4) ◽  
pp. 042086
Author(s):  
Fengquan Guo ◽  
Qiang Zhang
2021 ◽  
Vol 13 (6) ◽  
pp. 3089
Author(s):  
Miquel Torrent ◽  
Pedro Javier Gamez-Montero ◽  
Esteban Codina

This article presents a methodology for predicting the fluid dynamic behavior of a gear pump over its operating range. Complete pump parameterization was carried out through standard tests, and these parameters were used to create a bond graph model to simulate the behavior of the unit. This model was experimentally validated under working conditions in field tests. To carry this out, the pump was used to drive the auxiliary movements of a drilling machine, and the experimental data were compared with a simulation of the volumetric behavior under the same conditions. This paper aims to describe a method for characterizing any hydrostatic pump as a “black box” model predicting its behavior in any operating condition. The novelty of this method is based on the correspondence between the variation of the parameters and the internal changes of the unit when working in real conditions, that is, outside a test bench.


2010 ◽  
Vol 44-47 ◽  
pp. 1767-1772
Author(s):  
De Xin Zhao ◽  
Rui Bo Yuan ◽  
Jing Luo

This article describes the structure of pure water hydraulic external gear pump, structural design and calculation of parameters,analysises the mai spare part material of pure water hydraulic external gear pump and determines the type of the new engineering materials. Besides the surface treatment process of pump are discussed. Pure water hydraulic external gear pump is simulated by FLUENT, obtaining the parameters of the influence of the pump's performance.


Author(s):  
K Foster ◽  
R Taylor ◽  
I M Bidhendi

A description is given of a computer program for investigating the performance of the external gear pumps under varying conditions with the special emphasis on the examination of pressure distributions within the pump, i.e. excitation forces for the vibration of the pump case and the variation in flow generated by the pump. Measurements are presented for the variation with time of tooth space pressure and the results are compared with the theoretical predictions from the computer program.


Author(s):  
G. Mimmi

Abstract In a previous paper the author proposed a method to reduce the periodic variation in flow rate for an external gear pump. To verify the experimental results, a series of experimental tests on a expressly realized gear pump, was carried out. The pump was equipped with relieving grooves milled into the side plates. The tests were done on a closed piping specifically realized and equipped for measuring the instantaneous flow rate of the fluid through a wedge-shaped hot film probe.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
R. Castilla ◽  
P. J. Gamez-Montero ◽  
D. del Campo ◽  
G. Raush ◽  
M. Garcia-Vilchez ◽  
...  

Recently several works have been published on numerical simulation of an external gear pump (EGP). Such kinds of pumps are simple and relatively inexpensive, and are frequently used in fluid power applications, such as fluid power in aeronautical, mechanical, and civil engineering. Nevertheless, considerable effort is being undertaken to improve efficiency and reduce noise and vibration produced by the flow and pressure pulsations. Numerical simulation of an EGP is not straightforward principally for two main reasons. First, the gearing mechanism between gears makes it difficult to handle a dynamic mesh without a considerable deterioration of mesh quality. Second, the dynamic metal–metal contact simulation is important when high pressure outflow has to be reproduced. The numerical studies published so far are based on a two-dimensional (2D) approximation. The aim of the present work is to contribute to the understanding of the fluid flow inside an EGP by means of a complete three-dimensional (3D) parallel simulation on a cluster. The 3D flow is simulated in a linux cluster with a solver developed with the openfoam Toolbox. The hexahedral mesh quality is maintained by periodically replacing the mesh and interpolating the physical magnitudes fields. The meshing contact point is simulated with the viscous wall approach, using a viscosity model based on wall proximity. The results for the flow rate ripples show a similar behavior to that obtained with 2D simulations. However, the flow presents important differences inside the suction and the discharge chambers, principally in the regions of the pipes' connection. Moreover, the decompression slot below the gearing zone, which can not be simulated with a 2D approximation, enables a more realistic simulation of a contact ratio greater than 1. The results are compared with experimental measurements recently published.


2017 ◽  
Vol 118 ◽  
pp. 539-550 ◽  
Author(s):  
Yonghan Yoon ◽  
Byung-Ho Park ◽  
Jaesool Shim ◽  
Yong-Oun Han ◽  
Byeong-Joo Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document