scholarly journals Relationship between pellet durability index and hardness of pellet with various binder for broiler finisher phase

2021 ◽  
Vol 788 (1) ◽  
pp. 012061
Author(s):  
W J Supriadi ◽  
I Amal ◽  
J Mustabi ◽  
J A Syamsu ◽  
M F Latief
Keyword(s):  
2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Dadik Pantaya., dkk

The present study was conducted to clarify the effect of addition of enzymes from rumen liquor on performance broiler of pelleting feed with basal ration of wheat pollard with addition of enzymes and processing broiler diets. Ruminal enzymes were extracted from Australian Commercial Cross (ACC) cattles. Application of enzyme on wheat pollard. Enzyme was reacted with wheatpollard and mixed with another feedstuff before steam pelleting process. The combination nine experimental diets were used as follows three levels enzyme supplementation (0, 620 and 1.240 U/kg) and three levels steam temperature at (60, 80 and 100 oC) Feed particles size, hardness, PDI (Pellet Durability Index), moisture content, protein, GE and hemicellulosa were evaluated parameter devided into nine treatmens were used in this research. Data from Completely Randomized Design factorial 3 x 3 were analyzed with Anova, if differences were continued by Duncan’s new multiple range test. Enzyme supplementation decreased feed hardness and PDI. There were interaction beetwen enzyme and temperature for feed moisture content. Hemicellulosa was significantly reduced by steam temperature at 80 and 100 oC and enzyme supplementation 1.240 U/kgKey Words: enzyme liquor rumen, wheat pollard, steam pelleting, feed Chemical composition


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satar Mahdevari ◽  
Mohammad Hayati

AbstractDesigning a suitable support system is of great importance in longwall mining to ensure the safe and stable working conditions over the entire life of the mine. In high-speed mechanized longwall mining, the most vulnerable zones to failure are roof strata in the vicinity of the tailgate roadway and T-junctions. Severe roof displacements are occurred in the tailgate roadway due to the high-stress concentrations around the exposed roof span. In this respect, Response Surface Methodology (RSM) was utilized to optimize tailgate support systems in the Tabas longwall coal mine, northeast of Iran. The nine geomechanical parameters were obtained through the field and laboratory studies including density, uniaxial compressive strength, angle of internal friction, cohesion, shear strength, tensile strength, Young’s modulus, slake durability index, and rock mass rating. A design of experiment was developed through considering a Central Composite Design (CCD) on the independent variables. The 149 experiments are resulted based on the output of CCD, and were introduced to a software package of finite difference numerical method to calculate the maximum roof displacements (dmax) in each experiment as the response of design. Therefore, the geomechanical variables are merged and consolidated into a modified quadratic equation for prediction of the dmax. The proposed model was executed in four approaches of linear, two-factor interaction, quadratic, and cubic. The best squared correlation coefficient was obtained as 0.96. The prediction capability of the model was examined by testing on some unseen real data that were monitored at the mine. The proposed model appears to give a high goodness of fit with the accuracy of 0.90. These results indicate the accuracy and reliability of the developed model, which may be considered as a reliable tool for optimizing or redesigning the support systems in longwall tailgates. Analysis of variance (ANOVA) was performed to identify the key variables affecting the dmax, and to recognize their pairwise interaction effects. The key parameters influencing the dmax are respectively found to be slake durability index, Young’s modulus, uniaxial compressive strength, and rock mass rating.


2020 ◽  
Vol 26 (4) ◽  
pp. 507-516
Author(s):  
Junsong Yan ◽  
Junhui Shen ◽  
Kaizhen Zhang ◽  
Jianjun Xu ◽  
Weifeng Duan ◽  
...  

ABSTRACT The mineral laumontite can undergo hydration/dehydration reactions at room temperature. The hydration/dehydration produces a 3 to 6 percent volume change in the unit cell. The effects of laumontite hydration/dehydration on swelling and slake durability were investigated using altered granodiorite containing laumontite from the dam foundation of Yangfanggou Hydro Power Station, Sichuan, China. The occurrence of laumontite in altered rocks was first determined by petrological analysis. Typical samples were then collected for laboratory X-ray diffraction (XRD) analyses, free swelling tests, and slake durability index (SDI) tests. The test results were analyzed to determine the quantitative relationships between laumontite content, maximum axial strain, and slake durability index. We found that hydration of laumontite led to rock swelling. As laumontite content increased, maximum axial strain increased linearly; if water penetrated the rock quickly, swelling occurred over a short period. The hydration/dehydration of laumontite decreased slake durability of the rock; the SDI decreased approximately linearly as laumontite content increased.


2014 ◽  
Vol 3 (6) ◽  
pp. 107 ◽  
Author(s):  
Sushil K. Singh ◽  
K. Muthukumarappan

<p>Nutritionally balanced ingredient blends for catla (<em>Catla catla</em>), belonging to the family Cyprinidae, were extruded using single screw extruder. The extrusion was carried out at five levels of soy white flakes content (21%, 29%, 40%, 52%, and 59% db), five levels of moisture content (15, 19, 25, 31, and 35% db) and five levels of barrel temperature (100, 110, 125, 140, and 150 ºC) using three different die nozzles (having L/D ratios 3.33, 5.83, and 7.25). Blends with net protein content of 32.5% contains soy white flakes, along with high protein distillers dried grains (HP-DDG), corn flour, corn gluten meal, fish meal, vitamin, and mineral mix. A central composite rotatable design (CCRD) and  response surface methodology (RSM) was used to investigate the significance of independent and interaction effects of the extrusion process variables on the extrudates physical properties namely pellet durability index, bulk density, water absorption and solubility indices and expansion ratio. Quadratic polynomial regression equations were developed to correlate the product responses and process variables as well as to obtain the response surfaces plots. The independent variables had significant (<em>P </em>&lt; 0.05) effects on physical properties of extrudates: (i) higher soy white flakes content increased the pellet durability index and water absorption index, but decreased the water solubility index, (ii) higher temperature decreased pellet durability index, bulk density and water solubility index, (iii) increased L/D ratio from 3.33 to 7.25 increased the pellet durability index, expansion ratio but decreased the bulk density of the extrudates.</p>


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 930
Author(s):  
Nitipong Soponpongpipat ◽  
Paisan Comsawang ◽  
Suwat Nanetoe

This work investigated quality properties of pellets of raw cassava rhizome (P-RC), pellets of pelletized cassava rhizome followed by torrefaction (T-CP), and pellets of torrefied cassava rhizome followed by pelletizing (P-TC). Torrefaction was conducted at temperatures of 230, 250, and 280 °C for 30 min. Pyrolysis characteristics of T-CP and P-TC at torrefied temperatures of 230 and 250 °C were studied using thermogravimetric analysis. It was found that at the similar torrefied temperature, P-TC had a higher bulk density, energy density, and pellet durability than that of T-CP and P-RC while T-CP had a higher HHV and moisture absorption than P-TC and P-RC. The bulk density of P-TC was 1.13–1.19 and 1.33–1.52 times higher than that of P-RC and T-CP, respectively. The HHV of T-CP was 1.07 and 1.29 times higher than P-TC and P-RC, respectively. The energy density of P-TC was 1.24–1.56 and 1.20–1.41 times higher than that of P-RC and T-CP. In terms of Pellet Fuel Institute (PFI) standard, the durability index of P-RC, P-TC, and T-CP at torrefied temperatures of 230 and 250 °C was acceptable. However, dramatically low and unacceptable durability index was found in case of T-CP at torrefied temperature of 280 °C. The moisture absorption of P-TC was lower than that of P-RC and T-CP. Finally, T-CP had a lower pyrolysis temperature and had a much lower solid yield than that of P-TC. Variation of pyrolysis characteristics indicated the difference in chemical composition between T-CP and P-TC.


Sign in / Sign up

Export Citation Format

Share Document