scholarly journals Comparison of two Centennial-scale Sea Surface Temperature Datasets in the Regional Climate Change Studies of the China Seas

Author(s):  
Wang Qingyuan ◽  
Wang Yanan ◽  
Liu Yiwei
2012 ◽  
Vol 27 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Erin L. McClymont ◽  
Raja S. Ganeshram ◽  
Laetitia E. Pichevin ◽  
Helen M. Talbot ◽  
Bart E. van Dongen ◽  
...  

2021 ◽  
Vol 14 (9) ◽  
pp. 1-7
Author(s):  
N.D. Hung ◽  
L.T.H. Thuy ◽  
T.V. Hang ◽  
T.N. Luan

The coral reef ecosystem in Cu Lao Cham, Vietnam is part of the central zone of the Cu Lao Cham -Hoi An, a biosphere reserve and it is strictly protected. However, the impacts of natural disasters - tropical cyclones (TCs) go beyond human protection. The characteristic feature of TCs is strong winds and the consequences of strong winds are high waves. High waves caused by strong TCs (i.e. level 13 or more) cause decline in coral cover in the seas around Cu Lao Cham. Based on the relationship between sea surface temperature (SST) and the maximum potential intensity (MPI) of TCs, this research determines the number of strong TCs in Cu Lao Cham in the future. Using results from a regional climate change model, the risk is that the number of strong TCs in the period 2021-2060 under the RCP4.5 scenario, will be 3.7 times greater than in the period 1980-2019 and under the RCP 8.5 scenario it will be 5.2 times greater than in the period 1980-2019. We conclude that increases in SST in the context of climate change risks will increase the number and intensity of TCs and so the risk of their mechanical impact on coral reefs will be higher leading to degradation of this internationally important site.


2013 ◽  
Vol 9 (4) ◽  
pp. 1519-1542 ◽  
Author(s):  
R. Ohgaito ◽  
T. Sueyoshi ◽  
A. Abe-Ouchi ◽  
T. Hajima ◽  
S. Watanabe ◽  
...  

Abstract. The importance of evaluating models through paleoclimate simulations is becoming more recognized in efforts to improve climate projection. To evaluate an integrated Earth System Model, MIROC-ESM, we performed simulations in time-slice experiments for the mid-Holocene (6000 yr before present, 6 ka) and preindustrial (1850 AD, 0 ka) periods under the protocol of the Coupled Model Intercomparison Project 5/Paleoclimate Modelling Intercomparison Project 3. We first give an overview of the simulated global climates by comparing with simulations using a previous version of the MIROC model (MIROC3), which is an atmosphere–ocean coupled general circulation model. We then comprehensively discuss various aspects of climate change with 6 ka forcing and how the differences in the models can affect the results. We also discuss the representation of the precipitation enhancement at 6 ka over northern Africa. The precipitation enhancement at 6 ka over northern Africa according to MIROC-ESM does not differ greatly from that obtained with MIROC3, which means that newly developed components such as dynamic vegetation and improvements in the atmospheric processes do not have significant impacts on the representation of the 6 ka monsoon change suggested by proxy records. Although there is no drastic difference between the African monsoon representations of the two models, there are small but significant differences in the precipitation enhancement over the Sahara in early summer, which can be related to the representation of the sea surface temperature rather than the vegetation coupling in MIROC-ESM. Because the oceanic parts of the two models are identical, the difference in the sea surface temperature change is ultimately attributed to the difference in the atmospheric and/or land modules, and possibly the difference in the representation of low-level clouds.


Sign in / Sign up

Export Citation Format

Share Document