scholarly journals Effect of rear walls on the rocking response of rock blocks under seismic excitations

2021 ◽  
Vol 833 (1) ◽  
pp. 012085
Author(s):  
M Mennitti ◽  
R M S Maiorano ◽  
S Aversa
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaobin Hu ◽  
Qinwang Lu ◽  
Yang Yang

This paper presents a numerical procedure to simulate the rocking response of self-centering walls under ground excitations. To this aim, the equations of motion that govern the dynamic response of self-centering walls are first formulated and then solved numerically, in which three different self-centering wall structural systems are considered, that is, (i) including the self-weight of the wall only, (ii) including posttensioned tendon, and (iii) including both posttensioned tendon and dampers. Following the development of the numerical procedure, parametric studies are then carried out to investigate the influence of a variety of factors on the dynamic response of the self-centering wall under seismic excitations. The investigation results show that within the cases studied in this paper the installation of posttensioned tendon is capable of significantly enhancing the self-centering ability of the self-centering wall. In addition, increasing either the initial force or the elastic stiffness of the posttensioned tendon can reduce the dynamic response of the self-centering wall in terms of the rotation angle and angular velocity, whereas the former approach is found to be more effective than the latter one. It is also revealed that the addition of the dampers is able to improve the energy dissipation capacity of the self-centering wall. Furthermore, for the cases studied in this paper the yield strength of the dampers appears to have a more significant effect on the dynamic response of the self-centering wall than the elastic stiffness of the dampers.


1993 ◽  
Vol 119 (12) ◽  
pp. 2449-2460 ◽  
Author(s):  
Zbigniew Zembaty ◽  
Steen Krenk

Author(s):  
S. J. Dyke ◽  
B. F. Spencer ◽  
M. K. Sain ◽  
J. D. Carlson

Abstract In this paper, the efficacy of magnetorheological (MR) dampers for seismic protection of structures is investigated through a series of experiments in which an MR damper is used to control a three story test structure subjected to a one-dimensional earthquake motion. Because of the intrinsic nonlinearity of the MR damper, several earthquake amplitudes are considered to investigate the performance, in terms of both peak and rms responses, of this control systems over a range of loading conditions. The results indicate that the MR damper is quite effective for structural response reduction over a wide class of seismic excitations.


2018 ◽  
Vol 219 ◽  
pp. 01001
Author(s):  
Marcin Szczepański ◽  
Wojciech Migda

The aim of the article is to present results of seismic analysis results of two real-sized timber frame buildings subjected to seismic excitations. The first model was insulated with mineral wool, the second one with polyurethane foam. Technology and specifications involved in both models construction is based on the previously conducted experimental research on timber frame houses, including wall panels tests, wall numerical models and study on material properties and precisely reflect results of the those research. During the seismic analysis reference node located in buildings were selected. In selected node displacement values were measured and compared between two analyzed models. The results of the numerical analysis presented in the article indicate that the application of polyurethane foam for a skeleton filling of the timber-frame building leads to the increase in stiffness as well as damping of the whole structure, which results in a considerable increase in the seismic resistance of the structure.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaohan Wu ◽  
Jun Wang ◽  
Jiangyong Zhou

A high four-tower structure is interconnected with a long sky corridor bridge on the top floor. To reduce the earthquake responses and member forces of the towers and sky corridor bridge, a passive control strategy with a friction pendulum tuned mass damper (FPTMD) was adopted. The sky corridor bridge was as the mass of FPTMD. The connection between the towers and the sky corridor bridge was designed as flexible links, where friction pendulum bearings (FPBs) and viscous dampers were installed. Elastoplastic time-history analysis was conducted by using Perform-3D model to look into its seismic behavior under intensive seismic excitation. The optimal design of the FPTMD with varying friction coefficients and radius of friction pendulum bearing (FPB) under seismic excitations was carried out, and the seismic behavior of the structure was also investigated at the same time.Results show that, for this four-tower connected structure, the friction pendulum tuned mass damper (FPTMD) has very well effect on seismic reduction. The structure can meet the seismic resistance design requirements.


Sign in / Sign up

Export Citation Format

Share Document