scholarly journals Effectiveness of herbicide treatment on pea crops

2021 ◽  
Vol 839 (2) ◽  
pp. 022030
Author(s):  
S Ilina ◽  
I Ivanova ◽  
A Fadeev
Keyword(s):  
Agronomie ◽  
2001 ◽  
Vol 21 (3) ◽  
pp. 267-276
Author(s):  
Daniela Businelli ◽  
Enrico Tombesi ◽  
Marco Trevisan

2021 ◽  
pp. 1-28
Author(s):  
Clay M. Perkins ◽  
Thomas C. Mueller ◽  
Lawrence E. Steckel

Abstract Junglerice has become a major weed in Mid-south US and other areas. Glyphosate resistance has been documented in junglerice populations and is part of the reason for the increase in its prevalence. However, reduced junglerice control with glyphosate + dicamba and clethodim + dicamba mixtures has been observed in many production fields where glyphosate resistance has not yet evolved. Therefore, research was conducted assessing reduced junglerice control with glyphosate and clethodim when applied with dicamba. Adding dicamba to the spray tank with glyphosate reduced junglerice control by 27%. Adding dicamba to the spray tank with clethodim reduced junglerice control by 11%. The use of TTI nozzles reduced junglerice control an additional 8% compared to applications with an AIXR nozzle. When a drift reduction agent (DRA) was added to dicamba mixtures with glyphosate or clethodim, junglerice control was reduced 36%. Junglerice control was similar with the glyphosate + dicamba treatment compared to the glyphosate + 2,4-D mixture. There was no interaction between nozzles and herbicide treatment. Regardless of herbicide treatment junglerice control was always lower when applied with the ultra-course TTI nozzle. Many applicators in Tennessee prefer to make one application of glyphosate + dicamba in a mixture to save time (Authors personal experience). These results show that the addition of dicamba to glyphosate or clethodim applied with labeled nozzles and a DRA results in reduced junglerice control and should be avoided.


Weed Science ◽  
1979 ◽  
Vol 27 (4) ◽  
pp. 460-462 ◽  
Author(s):  
G. W. Burt ◽  
C. A. Buzio

The susceptibility of corn (Zea maysL. ‘Pioneer 3334A’) at different stages of growth to EPTC (S-ethyl dipropylthiocarbamate) plus a herbicide-protectant, R-25788 (N,N-diallyl-2,2-dichloroacetamide), was studied in the greenhouse. Corn was treated with either 25 ppm or 12.5 ppm EPTC containing R-25788 at planting and at 2, 4, 6, and 8 weeks thereafter. The herbicide was soil-applied and immediately incorporated by watering. Phytotoxicity and plant height were observed periodically for 56 days after herbicide treatment. Within 21 days after treatment with 25 ppm EPTC containing R-25788, injury and plant height reduction occurred in corn treated at planting, or at 2 and 4 weeks but not at 6 or 8 weeks after planting. At 56 days, however, corn treated at planting or 2 weeks after planting had outgrown all injury symptoms and was as tall as the controls (>84%). Corn treated at 4 weeks after planting, however, still remained injured and was 45% as tall as its respective control. Corn treated at 6 to 8 weeks showed no injury during the entire period of observations. The data indicates that corn is most susceptible to EPTC plus R-25788 at 4 weeks after planting. The results of this greenhouse study are discussed in relation to corn injury as observed in the field.


2011 ◽  
Vol 4 (4) ◽  
pp. 419-426 ◽  
Author(s):  
Patrick J. Minogue ◽  
Stephen F. Enloe ◽  
Anna Osiecka ◽  
Dwight K. Lauer

AbstractKudzu is an invasive perennial climbing vine characterized by fast growth rates and tolerance to control measures. Repeated applications with high rates of 2,4-D plus picloram provide effective kudzu control, but picloram use is not permitted in certain states due to groundwater pollution concerns. Studies were conducted in Alabama and Florida to compare kudzu control with aminocyclopyrachlor, a new herbicide, to control provided by aminopyralid, clopyralid, metsulfuron methyl, and picloram plus 2,4-D, which are common treatments for kudzu management. Two annual applications of the same herbicide treatment were evaluated for effects on kudzu cover, kudzu volume index, and cover of other vegetation. Aminocyclopyrachlor at 140 to 280 g ae ha−1 (2 to 4 oz ae ac−1) was as effective as the standard 4.48 kg ae ha−1 (4 lb ae ac−1) 2,4-D amine plus 1.2 kg ae ha−1 picloram for kudzu control. There were no differences in kudzu control among the three rates of aminocyclopyrachlor tested. Colonization by graminoids, forbs, and Rubus spp. at 2 yr was greatest for herbicides providing the best kudzu control: aminocyclopyrachlor, and 2,4-D plus picloram. Herbicide treatments were more effective in controlling kudzu at the Alabama location, but repeated annual applications for 2 yr did not completely eliminate kudzu with any treatment at either site.


1966 ◽  
Vol 67 (2) ◽  
pp. 239-242
Author(s):  
Maurice Eddowes

Dinoseb and TCA were successfully used to control weeds in potatoes by Robertson (1960), and Wood, Sutherland & Stephens (1960). Since then many investigations have been carried out on the use of newer herbicides including the bipyridils, triazines and substituted ureas. The results of a number of these studies, presented at the Seventh British Weed Control Conference (1964), suggested that herbicides might give effective control of annual weeds in potatoes under a range of British conditions. Yields of marketable ware following herbicide treatment were similar, in general, to those obtained following standard post-planting cultivations, but occasionally the yields after herbicide treatment were either as much as 20% higher or lower than the controls. The performance of the herbicides was related mainly to weed flora, soil type and amount and distribution of rainfall.


2013 ◽  
Vol 27 (4) ◽  
pp. 656-663 ◽  
Author(s):  
Kristin K. Rosenbaum ◽  
Kevin W. Bradley

A survey of soybean fields containing waterhemp infestations was conducted just prior to harvest in 2008 and 2009 to determine the frequency and distribution of glyphosate-resistant waterhemp in Missouri, and to determine if there are any in-field parameters that may serve as indicators of glyphosate resistance in this species in future crop production systems. Glyphosate resistance was confirmed in 99 out of 144, or 69%, of the total waterhemp populations sampled, which occurred in 41 counties of Missouri. Populations of glyphosate-resistant waterhemp were more likely to occur in fields with no other weed species present at the end of the season, continuous cropping of soybean, exclusive use of glyphosate for several consecutive seasons, and waterhemp plants showing obvious signs of surviving herbicide treatment compared to fields characterized with glyphosate-susceptible waterhemp. Therefore, it is suggested that these four site parameters, and certain combinations of these parameters, serve as predictors of glyphosate resistance in future waterhemp populations.


1982 ◽  
Vol 60 (12) ◽  
pp. 2518-2529 ◽  
Author(s):  
Christopher Walker ◽  
Carl W. Mize ◽  
Harold S. McNabb Jr.

Two different sites in central Iowa were planted with hybrid poplars and subsequently sampled over a growing season for spores of endogonaceous fungi. At one of the sites, the effects of plowing and herbicide treatment on spore numbers also were examined. Ten species of fungi in the genera Acaulospora, Gigaspora, and Glomus were recorded at the first site. The second location yielded 12 species from the same genera. In both sites, the distribution of spores was highly variable. The poplars rarely became endomycorrhizal and had no effect on spore populations during the experimental period. Changes in spore populations were correlated with soil-moisture level. Evidence was found for some depression of spore production caused by plowing and herbicide treatment. The conclusion was drawn that small samples with but few replicates may not adequately represent populations of endogonaceous spores.


1983 ◽  
Vol 63 (1) ◽  
pp. 235-241 ◽  
Author(s):  
J. A. IVANY ◽  
J. R. ENMAN

Forage corn (Zea mays L.) was grown successfully in Prince Edward Island by no-till planting the corn into standing cereal stubble 15–20 cm tall using a Buffalo no-till seeder. Planting with the slot-type shoe in a preliminary experiment in 1978 gave better forage yields than planting with a slice-type shoe mainly because of better plant population achieved. Subsequent experiments in 1979–1981 using the slot-type shoe to no-till plant corn in cereal stubble gave good forage yields when adequate weed control was provided with herbicide treatment. Best control of quackgrass (Agropyron repens L. Beauv.) and dandelion (Taraxacum officinale Weber) and crop yields was achieved with glyphosate + atrazine (1.5 + 2.5 kg a.i./ha) or amitrole + atrazine (3.4 + 2.5 kg a.i./ha) applied preemergence after seeding corn and before corn emergence. Control of quack grass and dandelion with glyphosate or amitrole used alone ranged from 71–80%, but paraquat alone did not provide any weed control. Addition of atrazine to paraquat, glyphosate, or amitrole gave improved control of quackgrass and dandelion and higher forage corn yields. Addition of 2.5 kg a.i./ha atrazine gave better results than use of 1.0 kg a.i./ha of atrazine.Key words: Forage corn, no-till seeding, glyphosate, atrazine, aminotriazole, paraquat


Sign in / Sign up

Export Citation Format

Share Document