scholarly journals Experimental and Numerical Study on Supersonic Ejectors Working with R-1234ze(E)

2018 ◽  
Vol 180 ◽  
pp. 02047 ◽  
Author(s):  
Jan Kracik ◽  
Vaclav Dvorak ◽  
Vu Nguyen Van ◽  
Kamil Smierciew

These days, much effort is being put into lowering the consumption of electric energy and involving renewable energy sources. Many engineers and designers are trying to develop environment-friendly technologies worldwide. It is related to incorporating appropriate devices into such technologies. The object of this paper is to investigate these devices in connection with refrigeration systems. Ejectors can be considered such as these devices. The primary interest of this paper is to investigate the suitability of a numerical model for an ejector, which is incorporated into a refrigeration system. In the present paper, there have been investigated seven different test runs of working of the ejector with a working fluid R-1234ze(E). Some of the investigated cases seem to have a good agreement and there are no significant discrepancies between them, however, there are also cases that do not correspond to the experimental data at all. The ejector has been investigated in both on-design and off-design working modes. A comparison between the experimental and numerical data (CFD) performed by Ansys Fluent software is presented and discussed for both an ideal and a real gas model. In addition, an enhanced analytical model has been introduced for all runs of the ejector.

2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


2021 ◽  
Vol 850 (1) ◽  
pp. 012024
Author(s):  
Ravi Kant Singh ◽  
Achintya Kumar Pramanick ◽  
Subhas Chandra Rana

Abstract The present study intends to improve the performance of the Ranque-Hilsch counter flow vortex tube, analysed using computational fluid dynamics. In the axisymmetric 3-D, steady-state, compressible, and turbulent flow vortex tube, the air has been used as the working fluid. The ANSYS17.1 FLUENT software has been used with the standard º-ε turbulent model for different mass fraction of cold fluid and inlet pressure in the numerical simulation and validated with the experimental results. It is observed from the study that as the inlet chambers number increases from 1 to 2, there is a decrease of 7.8 % in the cold exit temperature of the vortex tube. However, insulating the double chamber vortex tube leads to a further reduction of 4.2% in the cold exit temperature. Therefore, it indicates that the overall decline in the cold exit temperature from one chamber non-insulated vortex tube to double chamber insulated vortex tube is 9.6%. In terms of cold exit temperature, it can be concluded that using a double inlet chamber vortex tube with insulation yields the optimum results.


Author(s):  
A.Yu. Lutsenko ◽  
V.A. Kriushin

The purpose of the study was to carry out a numerical simulation of the interaction of an underexpanded supersonic jet flowing into a flooded space with a normally located obstacle, and with the underlying surface. We performed the calculations in the ANSYS Fluent software package and presented flow patterns. For the case when the obstacle is located normally to the axis of the jet, we compared the pressure distribution in the radial direction with experimental data and made a conclusion about the changes in the integral load on the wall with a change in the distance to the nozzle exit. For the case when the obstacle is parallel to the jet axis, we presented the pressure distribution along the wall in the plane of symmetry, estimated the relative net force acting on the underlying surface, analyzed the nature of its change at various values of the off-design coefficient, the Mach number on the nozzle exit and the distance to the jet axis.


2012 ◽  
Vol 485 ◽  
pp. 616-619 ◽  
Author(s):  
Yong Quan Liu ◽  
An Min Xi ◽  
Hong Fei Liu

An interior trajectory simulation of the gas-steam missile ejection has been developed with the help of FLUENT software. One of the special features of this simulation is the method by which the coupled two-phase problem is reduced to solving the fluid equations only. The calculation has been done efficiently in FLUENT after setting all the required parameters and adding the source terms. Several figures of the velocity and pressure have been given to show the flow field in the reservoir. The distribution curves of the velocity and acceleration of the missile show that the results of the simulation are in good agreement with the test data of the experiments. This model can be used to analyze the similar launch procedures in practice.


2019 ◽  
Vol 11 (2) ◽  
pp. 216-228
Author(s):  
Ass. Prof. Dr. Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins investigated numerically in a natural convection field, and with steady-state heat transfer. Numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins). The number of fins used on the surface are eight. In this study, the heat input that is  used as follow (20, 40, 60, 80, 100, and 120 watts). The study is focused on interrupted rectangular fins with different arrangement of fins. The results show that the addition of interruption fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate obtained as an equation.                                                         


2020 ◽  
Vol 10 (1) ◽  
pp. 175-181
Author(s):  
Omer K. Ahmed ◽  
Raid W. Daoud ◽  
Ruaa H. Ali Al-Mallah

A numerical study is achieved on a new shape of temperature saver solar collector using an artificial neural network. The storage collector is a triangle face and a right triangle pyramid for the volumetric shape. It is obtained by cutting a cube from one upper corner at 45°, down to the opposite hypotenuse of the base of the cube. The numerical study was carried out using the computational fluid dynamics code (ANSYS-Fluent) software with natural convection phenomenon in the pyramid enclosure. Elman backpropagation network is used for his ability to find the nearest solution with the smallest error rate. The network consists of three layers, each of different corresponding weights. The results show that the temperature and velocity distributions throughout the operating period were obtained. The influence of introducing an internal partition inside the triangular storage collector was investigated. Also the optimum geometry and location for this partition were obtained. The enhancement was best at y = 0.25 m, whereas the height of triangular collector was 0.5 m. The hourly system performance was evaluated for all test conditions. The performance of the NN to train a model for this work was 0.000207, while the error of the calculation was 1×10-2 as average.


2021 ◽  
Vol 14 ◽  
Author(s):  
Bouchra Achour ◽  
Allel Mokaddem ◽  
Bendouma Doumi ◽  
Abdelkader Ziadi ◽  
Lahcen Belarbi ◽  
...  

Background: : nowadays, the natural fibers are used in all industrial fields, particular in automotive technology and in civil engineering. this great emergence due to its biodegradability, recyclability and has no environmental effect. Objective: In this article, the effect of raffia, alfa and sisal fibers on the damage of biocomposite materials (raffia/PLA (polylactic acid), alfa/PLA and sisal/PLA), subjected to the same mechanical shear stress, has been investigated. Method: To calculate the damage to the interface, the genetic operator crossing are employed based on the fiber and matrix damage. Result: The results have shown that the raffia / PLA and alfa/PLA biocomposite materials are the better mechanical properties compared to sisal / PLA, this observation has been confirmed by the different values of interface damage of the biocomposite studied. Conclusion: The numerical results are similar and coincide perfectly with the results of Cox where he demonstrated that the Young's modulus of fibers improves the resistance of the interface. These conclusions are in very good agreement with our numerical data presented by the red cloud, and also in good agreement with the work presented by Antoine Le Duigou et al. and the work of Bodros et al. have shown that natural fibers greatly improve the physical characteristics of composite materials.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ketan Ajay ◽  
Lal Kundan

Nanoscience application plays a major role in heat transfer related problems. A nanofluid is basically a suspension of fine sized nanomaterials in base fluids like water, Therminol VP-1, ethylene glycol, and other heat transfer fluids. This paper evaluates the possible application of nanofluid in parabolic shaped concentrating solar collector using both experimental and CFD analysis. Different types of nanomaterials used are SiO2and CuO of 20 nm average size. Nanofluids of SiO2-H2O (DI) and CuO-H2O (DI) of 0.01% volume concentration are used. Flow rates of 40 LPH and 80 LPH are used. ANSYS FLUENT 14.5 is used for carrying out CFD investigation. 3D temperature distribution of absorber tube is obtained using numerical investigation and the result is compared with the experimental one. Improvement in efficiency of collector of about 6.68% and 7.64% is obtained using 0.01% vol. conc. SiO2-H2O (DI) nanofluid and 0.01% vol. conc. CuO-H2O (DI) nanofluid, respectively, as compared to H2O (DI) at 40 LPH while at 80 LPH improvement in efficiency of collector of about 7.15% and 8.42% is obtained using 0.01% vol. conc. SiO2-H2O (DI) nanofluid and 0.01% vol. conc. CuO-H2O (DI) nanofluid, respectively, as compared to H2O (DI). Both experimental and CFD temperature results are in good agreement.


2018 ◽  
Vol 6 (4) ◽  
pp. 171-176
Author(s):  
Omer Kh. Ahmed

A numerical study was achieved on a new design of storage solar collector. The storage collector is a triangular face and a right triangular pyramid for the volumetric shape. It is obtained by cutting a cube from one upper corner at 45o, down to the opposite hypotenuse of the base of the cube. The numerical study was carried out using the computational fluid dynamics code (ANSYS-Fluent) software with natural convection phenomenon in the pyramid enclosure. The results show that, the temperature and velocity distributions throughout the operating period were obtained. The influence of introducing an internal partition inside the triangular storage collector was investigated. Also the optimum geometry and location for this partition were obtained. The enhancement was best at y= 0.25 m whereas the height of triangular collector was 0.5 m. The hourly system performance was evaluated for all test conditions.


Sign in / Sign up

Export Citation Format

Share Document