scholarly journals Study on quantitative characterization method of measurement accuracy of geostress technology and equipment

2021 ◽  
Vol 859 (1) ◽  
pp. 012042
Author(s):  
Xiaoyu Han ◽  
Ping Fu ◽  
Aiqing Wu ◽  
Chunmin Xu
2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880957 ◽  
Author(s):  
Dezhong Zhao ◽  
Wenhu Wang ◽  
Jinhua Zhou ◽  
Ruisong Jiang ◽  
Kang Cui ◽  
...  

Parts must be measured to evaluate the manufacturing accuracy in order to check whether their dimension is in expected tolerance. In engineering, parts with free-form surfaces are generally measured by high-precision coordinate-measuring machines. The measurement accuracy is usually improved by increasing the density of measurement points, which is time-consuming and costly. In this article, a novel sampling method of measurement points for free-form surface inspection is proposed. First, surface inspection is simplified into the inspection of a number of section curves of the surface. Second, B-spline curves constructed with an iterative method are employed to approximate these section curves. Subsequently, data points necessary to construct the B-spline curves are taken as the measurement points. Finally, the proposed method is compared with other two sampling methods. The results indicate that the proposed method greatly reduced the number of measurement points without decreasing the precision of surface modeling.


2012 ◽  
Vol 523-524 ◽  
pp. 842-846 ◽  
Author(s):  
Takuya Kojima ◽  
Koji Usuki ◽  
Takao Kitayama ◽  
Daisuke Tonaru ◽  
Hiroki Matsumura ◽  
...  

The development of a high-speed nanoprofiler is essential for developing the next generation of ultraprecision aspheric mirrors. The purpose of this study is to develop a new high-speed nanoprofiler that traces the normal vector of an aspheric mirror surface. The method of measurement adopted here is based upon the accuracy of a rotation goniometer. In order to attain a form measurement accuracy of PV1nm, it is necessary to improve the angle measurement accuracy. In this study, we equip a nanoprofiler with a rotary encoder that is calibrated in order to accomplish this objective, using a national standard machine. Consequently, this rotary encoder can be calibrated with an accuracy of ±0.12 μrad when considering the influence of installing the encoder on the nanoprofiler.


2013 ◽  
Vol 25 (8) ◽  
pp. 2096-2100
Author(s):  
陈思 Chen Si ◽  
陈浩 Chen Hao ◽  
李敬 Li Jing ◽  
李寿涛 Li Shoutao ◽  
张小丽 Zhang Xiaoli ◽  
...  

Methodology ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Juan Ramon Barrada ◽  
Julio Olea ◽  
Vicente Ponsoda

Abstract. The Sympson-Hetter (1985) method provides a means of controlling maximum exposure rate of items in Computerized Adaptive Testing. Through a series of simulations, control parameters are set that mark the probability of administration of an item on being selected. This method presents two main problems: it requires a long computation time for calculating the parameters and the maximum exposure rate is slightly above the fixed limit. Van der Linden (2003) presented two alternatives which appear to solve both of the problems. The impact of these methods in the measurement accuracy has not been tested yet. We show how these methods over-restrict the exposure of some highly discriminating items and, thus, the accuracy is decreased. It also shown that, when the desired maximum exposure rate is near the minimum possible value, these methods offer an empirical maximum exposure rate clearly above the goal. A new method, based on the initial estimation of the probability of administration and the probability of selection of the items with the restricted method ( Revuelta & Ponsoda, 1998 ), is presented in this paper. It can be used with the Sympson-Hetter method and with the two van der Linden's methods. This option, when used with Sympson-Hetter, speeds the convergence of the control parameters without decreasing the accuracy.


2020 ◽  
pp. 30-35
Author(s):  
Gurami N. Akhobadze

In the age of digital transformation of production processes in industry and science the development and design of intelligent flow sensors for granular and liquid substances transferring through pipelines becomes more important. With this in view new approaches for improving the accuracy of microwave flowmeters are proposed. Taking into account the characteristics ofelectromagnetic waves propagating through a pipeline, a wave scattered by inhomogeneities of the controlled medium is analyzed. Features of the transformation of the polarized scattered wave limiting the geometric dimensions of the pipeline and optimizing the values of the useful scattered signal are revealed. Expediency of collection of the information signal with orthogonal polarization of the scattered wave and through a directional coupler is substantiated. The method of estimating the measurement accuracy with reference to the signal-to-noise ratio at the input of the processing device is given. The research results can be used in cryogenic machine engineering to measure volume and mass flows of liquid cryogenic products.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 94-LB
Author(s):  
GUIDO FRECKMANN ◽  
STEFAN PLEUS ◽  
PETER WINTERGERST ◽  
DELIA WALDENMAIER ◽  
NINA R. JENDRIKE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document