Absolute Calibration of the Rotary Encoder Considering the Influence on-Machine for Development of High-Speed Nanoprofiler

2012 ◽  
Vol 523-524 ◽  
pp. 842-846 ◽  
Author(s):  
Takuya Kojima ◽  
Koji Usuki ◽  
Takao Kitayama ◽  
Daisuke Tonaru ◽  
Hiroki Matsumura ◽  
...  

The development of a high-speed nanoprofiler is essential for developing the next generation of ultraprecision aspheric mirrors. The purpose of this study is to develop a new high-speed nanoprofiler that traces the normal vector of an aspheric mirror surface. The method of measurement adopted here is based upon the accuracy of a rotation goniometer. In order to attain a form measurement accuracy of PV1nm, it is necessary to improve the angle measurement accuracy. In this study, we equip a nanoprofiler with a rotary encoder that is calibrated in order to accomplish this objective, using a national standard machine. Consequently, this rotary encoder can be calibrated with an accuracy of ±0.12 μrad when considering the influence of installing the encoder on the nanoprofiler.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4348 ◽  
Author(s):  
Wei Liu ◽  
Xin Ma ◽  
Xiao Li ◽  
Yi Pan ◽  
Fuji Wang ◽  
...  

Nowadays, due to the advantages of non-contact and high-speed, vision-based pose measurements have been widely used for aircraft performance testing in a wind tunnel. However, usually glass ports are used to protect cameras against the high-speed airflow influence, which will lead to a big measurement error. In this paper, to further improve the vision-based pose measurement accuracy, an imaging model which considers the refraction light of the observation window was proposed. In this method, a nonlinear camera calibration model considering the refraction brought by the wind tunnel observation window, was established first. What’s more, a new method for the linear calibration of the normal vector of the glass observation window was presented. Then, combining with the proposed matching method based on coplanarity constraint, the six pose parameters of the falling target could be calculated. Finally, the experimental setup was established to conduct the pose measurement study in the laboratory, and the results satisfied the application requirements. Besides, experiments for verifying the vision measurement accuracy were also performed, and the results indicated that the displacement and angle measurement accuracy approximately increased by 57% and 33.6%, respectively, which showed the high accuracy of the proposed method.


2012 ◽  
Vol 12 ◽  
pp. S47-S51 ◽  
Author(s):  
H. Matsumura ◽  
D. Tonaru ◽  
T. Kitayama ◽  
K. Usuki ◽  
T. Kojima ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2603 ◽  
Author(s):  
Hua-Kun Jia ◽  
Lian-Dong Yu ◽  
Yi-Zhou Jiang ◽  
Hui-Ning Zhao ◽  
Jia-Ming Cao

The measurement accuracy of the precision instruments that contain rotation joints is influenced significantly by the rotary encoders that are installed in the rotation joints. Apart from the imperfect manufacturing and installation of the rotary encoder, the variations of ambient temperature could cause the angle measurement error of the rotary encoder. According to the characteristics of the 2 π periodicity of the angle measurement at the stationary temperature and the complexity of the effects of ambient temperature changes, the method based on the Fourier expansion-back propagation (BP) neural network optimized by genetic algorithm (FE-GABPNN) is proposed to improve the angle measurement accuracy of the rotary encoder. The proposed method, which innovatively integrates the characteristics of Fourier expansion, the BP neural network and genetic algorithm, has good fitting performance. The rotary encoder that is installed in the rotation joint of the articulated coordinate measuring machine (ACMM) is calibrated by using an autocollimator and a regular optical polygon at ambient temperature ranging from 10 to 40 °C. The contrastive analysis is carried out. The experimental results show that the angle measurement errors decrease remarkably, from 110.2″ to 2.7″ after compensation. The mean root mean square error (RMSE) of the residual errors is 0.85″.


2021 ◽  
Vol 11 (13) ◽  
pp. 5787
Author(s):  
Toan-Thang Vu ◽  
Thanh-Tung Vu ◽  
Van-Doanh Tran ◽  
Thanh-Dong Nguyen ◽  
Ngoc-Tam Bui

The measurement speed and measurement accuracy of a displacement measuring interferometer are key parameters. To verify these parameters, a fast and high-accuracy motion is required. However, the displacement induced by a mechanical actuator generates disadvantageous features, such as slow motion, hysteresis, distortion, and vibration. This paper proposes a new method for a nonmechanical high-speed motion using an electro-optic modulator (EOM). The method is based on the principle that all displacement measuring interferometers measure the phase change to calculate the displacement. This means that the EOM can be used to accurately generate phase change rather than a mechanical actuator. The proposed method is then validated by placing the EOM into an arm of a frequency modulation interferometer. By using two lock-in amplifiers, the phase change in an EOM and, hence, the corresponding virtual displacement could be measured by the interferometer. The measurement showed that the system could achieve a displacement at 20 kHz, a speed of 6.08 mm/s, and a displacement noise level < 100 pm//√Hz above 2 kHz. The proposed virtual displacement can be applied to determine both the measurement speed and accuracy of displacement measuring interferometers, such as homodyne interferometers, heterodyne interferometers, and frequency modulated interferometers.


2016 ◽  
Vol 29 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Na Jin Seo ◽  
Mojtaba F. Fathi ◽  
Pilwon Hur ◽  
Vincent Crocher

2011 ◽  
Vol 128-129 ◽  
pp. 85-91
Author(s):  
Yi Fan Zeng ◽  
Rui Li

This paper proposes a novel method called arithmetic operations to analyze and process the generated voltage-signal from the single pair-pole magnetic encoder. Dual orthogonal voltage-signals are generated by two vertical hall sensors which are placed in the bottom of a columned magnet. When signals pass A/D converter, the quadrant determination, arithmetic operations and nonlinear correction in FPGA chip are performed before the values of rotational angle are displayed on the LED. This paper also designs and implements the single pair-pole magnetic encoder which has advantages such as high-speed, high-resolution and high-accuracy in the area of angle measurement.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yuta Teruyama ◽  
Takashi Watanabe

The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors.


2012 ◽  
Vol 3 (6) ◽  
pp. 15-18 ◽  
Author(s):  
Artūras Prielaidas ◽  
Rimas Lazdinas

Rotary encoders are the main devices in industrial angle measurement. Accuracy is very important and is assured by the technology of manufacture. The main part (rotary disk) is under examination, and therefore a number of its characteristics are established and a comparison with the assembled encoder is presented. In conclusion, an error in the angle of the rotary disk makes a possibility of forecasting an error in the assembled encoder angle. Santrauka Nagrinėjamas limbų paklaidų matavimas, jų vertinimas, fotoelektrinių matavimų keitiklių paklaidų matavimas, bandoma nustatyti keitiklio paklaidų priklausomybę nuo limbo paklaidų. Pateikta limbų, keitiklių apžvalga, analizė, pagrindinės schemos. Atlikta limbų ir keitiklių paklaidų aproksimacija parametrinėmis funkcijomis. Apibendrinti visų matavimų rezultatai – kas būdinga paklaidų kreivėms, kokie dydžiai, jų aproksimacijos parametrinėmis funkcijomis rezultatai, formulės, analizė. Atlikti koreliacijos tarp limbo ir matavimo keitiklio paklaidų tyrimai.


2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


Sign in / Sign up

Export Citation Format

Share Document