scholarly journals Verification of the Jakarta Geoid Model from the Gravity Data of 2.5 km Resolution with Gravimetric Geoid

2021 ◽  
Vol 873 (1) ◽  
pp. 012045
Author(s):  
D Ramdani ◽  
A N Safi’i ◽  
P Hartanto ◽  
N Oktaviani ◽  
M I Hariyono

Abstract To use the Global Navigation Satellite System (GNSS) correctly, the height information should be transformed into orthometric height by subtracting geoid undulation from it. This orthometric height is commonly used for practical purposes. In 2015 geoid of Jakarta has been produced, and it has an accuracy of 0.076 m. In the year 2019, airborne gravimetry has been done for the entire Java Island. The area of DKI Province cannot be measured because there is inhibition from Airnav. For this reason, terrestrial gravimetric measurements are carried out in this region by adding points outside the previously measured area. To compute the geoid in the Jakarta region is needed the Global Geopotential Model (GGM). In this paper, the GMM used is gif48. The “remove and restore” method will be used in calculating the geoid in this Jakarta region. Besides that in this geoid calculation also uses Stokes kernel and FFT to speed up the calculation. The verification of the resulting geoid is carried with 11 points in DKI Jakarta Province. This verification produces a standard deviation of 0.116 m and a root mean square of 0.411 m.

2018 ◽  
Vol 162 ◽  
pp. 03028 ◽  
Author(s):  
Ali Fanos ◽  
Rusul Tahir ◽  
Suad Mohammed ◽  
May Mahmood

In last decades Global Navigation Satellite System (GNSS) or as known Global Positioning System (GPS) technique is considered a revolutionary technique in the field of geodetic survey in comparison with traditional techniques (level, theodolite and total station). The height obtained from GNSS technique is ellipsoid height and to have a physical meaning in a surveying or engineering application it must be transformed to orthometric height. Therefore, a geoid model has to be used to do this transformation process. In Iraq there is no specific geoid that can be used in order to get proper orthometric height. This research aims to calculate adjusted geoid undulation based on Earth Gravitational Model 2008 (EGM08) through observation of Iraqi official vertical network using GNSS technique. Different regions in Iraq have been chosen to perform this research. The result of this research can assist a lot to enhance the accuracy of elevations obtained from GNSS and support the establishment of Iraq geoid.


2011 ◽  
Vol 37 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Ahmed Abdalla ◽  
Robert Tenzer

We compile a new geoid model at the computation area of New Zealand and its continental shelf using the method developed at the Royal Institute of Technology (KTH) in Stockholm. This method utilizes the least-squares modification of the Stokes integral for the biased, unbiased, and optimum stochastic solutions. The modified Bruns-Stokes integral combines the regional terrestrial gravity data with a global geopotential model (GGM). Four additive corrections are calculated and applied to the approximate geoid heights in order to obtain the gravimetric geoid. These four additive corrections account for the combined direct and indirect effects of topography and atmosphere, the contribution of the downward continuation reduction, and the formulation of the Stokes problem in the spherical approximation. The gravimetric geoid model is computed using two heterogonous gravity data sets: the altimetry-derived gravity anomalies from the DNSC08 marine gravity database (offshore) and the ground gravity measurements from the GNS Science gravity database (onshore). The GGM coefficients are taken from EIGEN-GRACE02S complete to degree 65 of spherical harmonics. The topographic heights are generated from the 1×1 arc-sec detailed digital terrain model (DTM) of New Zealand and from the 30×30 arc-sec global elevation data of SRTM30_PLUS V5.0. The least-squares analysis is applied to combine the gravity and GPS-levelling data using a 7-parameter model. The fit of the KTH geoid model with GPS-levelling data in New Zealand is 7 cm in terms of the standard deviation (STD) of differences. This STD fit is the same as the STD fit of the NZGeoid2009, which is the currently adopted official quasigeoid model for New Zealand. Santrauka Stokholmo Karališkajame technologijos institute (KTH) sukurtu metodu apskaičiuotas naujas Naujosios Zelandijos ir kontinentinio šelfo geoido modelis. Taikoma Stokso integralo mažiausiųjų kvadratų modifikacija, įvertinant paklaidas ir jų nevertinant bei ieškant optimalių stochastinių sprendinių. Modifikuotas Bruno ir Stokso integralas sieja regioninius žemyninius gravimetrinius duomenis su globaliuoju geopotencialo modeliu (GGM). Gravimetriniam geoidui gauti skaičiuojamos keturios papildomos pataisos: topografinės situacijos ir atmosferos tiesioginės ir netiesioginės įtakos, redukcijos įtakos ir Stokso integralo taikymo sferiniam paviršiui. Gravimetrinis geoido modelis apskaičiuotas pagal du duomenų rinkinius: DNSC08 jūrinių gravimetrinių duomenų bazėje (šelfas) esančias altimetriniu metodu nustatytas sunkio pagreičio anomalijas ir žemyninės dalies gravimetrinių matavimų duomenis iš GNS gravimetrinės duomenų bazės (pakrantė). GGM koeficientai imti iš EIGEN-GRACE02S modelio sferinių iki 65 laipsnio harmonikų. Topografiniai aukščiai sugeneruoti iš Naujosios Zelandijos 1×1 sekundės detaliojo skaitmeninio reljefo modelio ir iš 30×30 sekundžių globaliojo aukščių modelio SRTM30_PLUS V5.0. Gravimetriniams ir GPS niveliacijos duomenims sujungti taikytas mažiausiųjų kvadratų 7 parametrų metodas. KTH metodu sudaryto geoido modelio vidutinė kvadratinė paklaida 7 cm. Tai sutampa su NZGeoid 2009 geoido modelio, taikomo Naujoje Zelandijoje, tikslumu. Резюме Модель геоида континентального шельфа Новой Зеландии построена с применением метода, созданного в Королевском технологическом институте Стокгольма. Данный метод основан на модификации решения интеграла Стокса методом наименьших квадратов с оценкой или без оценки погрешностей и поиском оптимальных статистических решений. Модифицированный интеграл БрунаСтокса объединяет региональные надземные гравиметрические данные с глобальной геопотенциальной моделью (GGM). Для определения гравиметрического геоида вычисляются дополнительные поправки прямого и косвенного влияния топографии и атмосферы, редукции и применения проблемы Стокса для сферической поверхности. Гравиметрическая модель геоида вычисляется на основе двух баз данных: альтиметрическим методом определенных аномалий силы тяжести в базе морских гравиметрических данных DNSC08 (шельф) и надземной части гравиметрических измерений из базы данных GNS. Коэффициенты GGM взяты из сферических гармоник до 65 степени модели EIGENGRACEO2S. Топографические высоты сгенерированы из детальной цифровой модели рельефа Новой Зеландии с сеткой 1×1 секунду и из глобальной модели высот SRTM30_PLUSv5.0 с сеткой 30×30 секунд. Для объединения гравиметрических и GPSнивелирных данных применялся метод наименьших квадратов с 7 параметрами. Среднеквадратическая погрешность модели геоида, созданной по методу КТН, равна 7 см. Точность аналогична точности применяемой в Новой Зеландии модели геоида NZGeoid2009.


Author(s):  
M. F. Pa’suya ◽  
A. H. M. Din ◽  
J. C. McCubbine ◽  
A. H. Omar ◽  
Z. M. Amin ◽  
...  

Abstract. We investigate the use of the KTH Method to compute gravimetric geoid models of Malaysian Peninsular and the effect of two differing strategies to combine and interpolate terrestrial, marine DTU17 free air gravity anomaly data at regular grid nodes. Gravimetric geoid models were produced for both free air anomaly grids using the GOCE-only geopotential model GGM GO_CONS_GCF_2_SPW_R4 as the long wavelength reference signal and high-resolution TanDEM-X global digital terrain model. The geoid models were analyzed to assess how the different gridding strategies impact the gravimetric geoid over Malaysian Peninsular by comparing themto 172 GNSS-levelling derived geoid undulations. The RMSE of the two sets of gravimetric geoid model / GNSS-levelling residuals differed by approx. 26.2 mm. When a 4-parameter fit is used, the difference between the RMSE of the residuals reduced to 8 mm. The geoid models shown here do not include the latest airborne gravity data used in the computation of the official gravimetric geoid for the Malaysian Peninsular, for this reason they are not as precise.


Author(s):  
Laode M Sabri

Geoid has an important role in converting geodetic heights to physical heights, both in orthometric height system and normal height systems. At present, Semarang City already has gravimetric geoid with centimeter-level precision. This gravimetric was validated by geometric geoid measured by static method.  GNSS (Global Navigation Satellite System) measurement using static method needs long observation time and costly because it requires network that connect baselines and points. This study aims to implement CORS (Continous Operating Reference Station) GNSS in measuring geodetic height and to apply gravimetric geoid in orthometric height calculations. In this research, the gravimetric geoid recalculation process was carried out using gravity disturbance data of 2016. The geoid fitting process was carried out iteratively based on gravity data and modification of the integral of Hotine. Geodetic height measurements were carried out at 40 points distributed olong 50 km leveling network. Geodetic height measurements were refered to CORS GNSS of BIG (Geospatial Information Agency) and UNDIP (Diponegoro University) to produce standard deviation ranged from ±0.003 m to ±0.055. Geometric geoid checking with previous gravimetric geoid before fitting produced standard deviation of  ±0.037 m and  datum offset of -0.690 m. Geometric geoid checking for recent gravimetric geoid after fitting produces standard deviation of ±0.043 m and datum offset of -0.010 m. This study concluded that the refering geodetic coordinates to CORS stations by 1 hour observation of rapid static method and processing baselines in commercial software are sufficient for the determination of orthometric height in centimeter-level precision. This study also concluded that gravimetric geoid fitting based on gravity data shifting can minimize datum offset and shrinkage in geoid map.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
L. E. Sjöberg ◽  
A. Gidudu ◽  
R. Ssengendo

AbstractFor many developing countries such as Uganda, precise gravimetric geoid determination is hindered by the low quantity and quality of the terrestrial gravity data. With only one gravity data point per 65 km2, gravimetric geoid determination in Uganda appears an impossible task. However, recent advances in geoid modelling techniques coupled with the gravity-field anomalies from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission have opened new avenues for geoid determination especially for areas with sparse terrestrial gravity. The present study therefore investigates the computation of a gravimetric geoid model overUganda (UGG2014) using the Least Squares Modification of Stokes formula with additive corrections. UGG2014 was derived from sparse terrestrial gravity data from the International Gravimetric Bureau, the 3 arc second SRTM ver4.1 Digital Elevation Model from CGIAR-CSI and the GOCE-only global geopotential model GO_CONS_GCF_2_TIM_R5. To compensate for the missing gravity data in the target area, we used the surface gravity anomalies extracted from the World Gravity Map 2012. Using 10 Global Navigation Satellite System (GNSS)/levelling data points distributed over Uganda, the RMS fit of the gravimetric geoid model before and after a 4-parameter fit is 11 cm and 7 cm respectively. These results show that UGG2014 agrees considerably better with GNSS/levelling than any other recent regional/ global gravimetric geoid model. The results also emphasize the significant contribution of the GOCE satellite mission to the gravity field recovery, especially for areas with very limited terrestrial gravity data.With an RMS of 7 cm, UGG2014 is a significant step forward in the modelling of a “1-cm geoid” over Uganda despite the poor quality and quantity of the terrestrial gravity data used for its computation.


GEOMATICA ◽  
2016 ◽  
Vol 70 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Marc Véronneau ◽  
Jianliang Huang

The Canadian Geodetic Vertical Datum of 2013 (CGVD2013) is the first major update to the vertical datum in Canada in almost 100 years. Canada is not only moving to a new vertical datum, but it is also using a modernized approach to realize it. The modernization of the height reference system is necessary to make it compatible with Global Navigation Satellite System (GNSS), which is commonly used for positioning by a growing number of users across Canada and the world. The geodetic levelling technique, which established a nation-wide network of benchmarks with known elevations, is replaced by a geoid model that describes the vertical datum with respect to an ellipsoid, which is the reference surface for GNSS positioning. Technically, height modernization replaces the need for the maintenance of benchmarks, as users can now install their own markers at more convenient locations using GNSS. The current geoid model for CGVD2013 is the Canadian Gravimetric Geoid 2013 (CGG2013).


2020 ◽  
Author(s):  
Hussein A. Abd-Elmotaal ◽  
Norbert Kühtreiber ◽  
Kurt Seitz ◽  
Bernhard Heck

Abstract In the framework of the IAG African Geoid Project, an attempt towards a precise geoid model for Africa is presented in this investigation. The available gravity data set suffers from significantly large data gaps. These data gaps are filled using the EIGEN-6C4 model on a 15′× 15′ grid prior to the gravity reduction scheme. The window remove-restore technique (Abd-Elmotaal and Kühtreiber, Phys Chem Earth Pt A 24(1):53–59, 1999; J Geod 77(1–2):77–85, 2003) has been used to generate reduced anomalies having a minimum variance to minimize the interpolation errors, especially at the large data gaps. The EIGEN-6C4 global model, complete to degree and order 2190, has served as the reference model. The reduced anomalies are gridded on a 5′× 5′ grid employing an un-equal weight least-squares prediction technique. The reduced gravity anomalies are then used to compute their contribution to the geoid undulation employing Stokes’ integral with Meissl (Preparation for the numerical evaluation of second order Molodensky-type formulas. Ohio State University, Department of Geodetic Science and Surveying, Rep 163, 1971) modified kernel for better combination of the different wavelengths of the earth’s gravity field. Finally the restore step within the window remove-restore technique took place generating the full gravimetric geoid. In the last step, the computed geoid is fitted to the DIR_R5 GOCE satellite-only model by applying an offset and two tilt parameters. The DIR_R5 model is used because it turned out that it represents the best available global geopotential model approximating the African gravity field. A comparison between the geoid computed within the current investigation and the existing former geoid model AGP2003 (Merry et al., A window on the future of geodesy. International Association of Geodesy Symposia, vol 128, pp 374–379, 2005) for Africa has been carried out.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 812
Author(s):  
Sotiris Lycourghiotis

The mean sea surface topography of the Ionian and Adriatic Seas has been determined. This was based on six-months of Global Navigation Satellite System (GNSS) measurements which were performed on the Ionian Queen (a ship). The measurements were analyzed following a double-path methodology based on differential GNSS (D-GNSS) and precise point positioning (PPP) analysis. Numerical filtering techniques, multi-parametric accuracy analysis and a new technique for removing the meteorological tide factors were also used. Results were compared with the EGM96 geoid model. The calculated differences ranged between 0 and 48 cm. The error of the results was estimated to fall within 3.31 cm. The 3D image of the marine topography in the region shows a nearly constant slope of 4 cm/km in the N–S direction. Thus, the effectiveness of the approach “repeated GNSS measurements on the same route of a ship” developed in the context of “GNSS methods on floating means” has been demonstrated. The application of this approach using systematic multi-track recordings on conventional liner ships is very promising, as it may open possibilities for widespread use of the methodology across the world.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


2020 ◽  
Vol 50 (2) ◽  
pp. 223-247
Author(s):  
Jaime GARBANZO-LEÓN ◽  
Alonso VEGA FERNÁNDEZ ◽  
Mauricio VARELA SÁNCHEZ ◽  
Juan Picado SALVATIERRA ◽  
Robert W. KINGDON ◽  
...  

GNSS observations are a common solution for outdoor positioning around the world for coarse and precise applications. However, GNSS produces geodetic heights, which are not physically meaningful, limiting their functionality in many engineering applications. In Costa Rica, there is no regional model of the geoid, so geodetic heights (h) cannot be converted to physically meaningful orthometric heights (H). This paper describes the computation of a geoid model using the Stokes-Helmert approach developed by the University of New Brunswick. We combined available land, marine and satellite gravity data to accurately represent Earth's high frequency gravity field over Costa Rica. We chose the GOCO05s satellite-only global geopotential model as a reference field for our computation. With this combination of input data, we computed the 2020 Regional Stokes-Helmert Costa Rican Geoid (GCR-RSH-2020). To validate this model, we compared it with 4 global combined geopotential models (GCGM): EGM2008, Eigen6C-4, GECO and SGG-UM-1 finding an average difference of 5 cm. GECO and SGG-UM-1 are more similar to the GCR-RSH-2020 based on the statistics of the difference between models and the shape of the histogram of differences. The computed geoid also showed a shift of 7 cm when compared to the old Costa Rican height system but presented a slightly better fit with that system than the other models when looking at the residuals. In conclusion, GCR-RSH-2020 presents a consistent behaviour with the global models and the Costa Rican height systems. Also, the lowest variance suggests a more accurate determination when the bias is removed.


Sign in / Sign up

Export Citation Format

Share Document