scholarly journals The performance of Pacitan Power Plant (pulverized boiler) toward the blending coal: an experimental

2021 ◽  
Vol 882 (1) ◽  
pp. 012039
Author(s):  
Rasgianti ◽  
N Cahyo ◽  
E Supriyanto ◽  
R B Sitanggang ◽  
M Triani ◽  
...  

Abstract Coal blending testing of medium rank coal (MRC) and low-rank coal (LRC) in the Pacitan power plant with pulverized boiler type was conducted to increase the use of readily available coal. It was necessary to ensure the impact of the blending coal on the boiler performance. Therefore, this study was aimed to examine the performance of the plant. There were two coal blending configurations in testing; a) Combo #1: 75% of LRC and 25% MRC; b) Combo #2: 60% of LRC and 40% MRC. Each combination was held in 4 schemes of load at 165 MW, 210 MW, 255 MW, and 300 MW. Heat rate calculation was determined with the heat loss method (energy balanced approach). As a result, compared to the commissioning test (2,270 kCal/kWh), the power plant performance decreased. The performance of combo #1 obtained 2,517 kcal/kWh; meanwhile, combo #2‘s performance showed 2,360 kcal/kWh.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Rajive Ganguli ◽  
Sukumar Bandopadhyay

The impact of particle size distribution (PSD) of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal), emissions (SO2,NOx, CO), and carbon content of ash (fly ash and bottom ash). The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2,NOx, and CO. Additionally, two tests where stack mercury (Hg) data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal). These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency) and thereby, increasing their marketability.


2021 ◽  
Vol 882 (1) ◽  
pp. 012033
Author(s):  
Eko Supriyanto ◽  
Nur Cahyo ◽  
Ruly Sitanggang ◽  
Rasgianti ◽  
Meiri Triani ◽  
...  

Abstract In a coal steam power plant, changes in coal quality significantly affect plant performance, especially in its boiler. A coal-fired power plant with a capacity of 400 MWe had been commissioned using coal with a calorific value of 5,242 kCal/kg. This study aims to determine the effect on unit performance and boiler efficiency due to changes in fuel use with the typical calorific value of 3,520 kCal/kg, 34,17% lower than the initial design. The performance tests were conducted using the heat loss method at loads: 50%, 65%, 75%, and 100%. The test result showed that using low-grade coal reduces boiler efficiency by 6.26%. There were four dominant boiler losses: heat loss due to moisture in dry flue gas, heat loss due to combustible in refuse, heat loss due to moisture in fuel, and heat loss due to hydrogen burning. Furthermore, the gross plant heat rate using low-grade coal was increased from 2,120 kCal/kWh to 2,718 kCal/kWh; however, the electric price becomes cheaper from 1.99 cent-USD/kWh becomes 1.31 cent-USD/kWh.


2021 ◽  
Vol 1034 (1) ◽  
pp. 012061
Author(s):  
Is Bunyamin Suryo ◽  
Ari Kurniawan Saputra ◽  
Wawan Aries Widodo ◽  
Nur Ikhwan ◽  
Zainal Maskur

2011 ◽  
Vol 4 ◽  
pp. 1385-1394 ◽  
Author(s):  
Sebastian Linnenberg ◽  
Ulrich Liebenthal ◽  
Jochen Oexmann ◽  
Alfons Kather

Author(s):  
Weimar Mantilla ◽  
José García ◽  
Rafael Guédez ◽  
Alessandro Sorce

Abstract Under new scenarios with high shares of variable renewable electricity, combined cycle gas turbines (CCGT) are required to improve their flexibility, in terms of ramping capabilities and part-load efficiency, to help balance the power system. Simultaneously, liberalization of electricity markets and the complexity of its hourly price dynamics are affecting the CCGT profitability, leading the need for optimizing its operation. Among the different possibilities to enhance the power plant performance, an inlet air conditioning unit (ICU) offers the benefit of power augmentation and “minimum environmental load” (MEL) reduction by controlling the gas turbine inlet temperature using cold thermal energy storage and a heat pump. Consequently, an evaluation of a CCGT integrated with this inlet conditioning unit including a day-ahead optimized operation strategy was developed in this study. To establish the hourly dispatch of the power plant and the operation mode of the inlet conditioning unit to either cool down or heat up the gas turbine inlet air, a mixed-integer linear optimization (MILP) was formulated using MATLAB, aiming to maximize the operational profit of the plant within a 24-hours horizon. To assess the impact of the proposed unit operating under this dispatch strategy, historical data of electricity and natural gas prices, as well as meteorological data and CO2 emission allowances price, have been used to perform annual simulations of a reference power plant located in Turin, Italy. Furthermore, different equipment capacities and parameters have been investigated to identify trends of the power plant performance. Lastly, a sensitivity analysis on market conditions to test the control strategy response was also considered. Results indicate that the inlet conditioning unit, together with the dispatch optimization, increases the power plant’s operational profit by achieving a wider operational range, particularly important during peak and off-peak periods. For the specific case study, it is estimated that the net present value of the CCGT integrated with the ICU is 0.5% higher than the power plant without the unit. In terms of technical performance, results show that the unit reduces the minimum environmental load by approximately 1.34% and can increase the net power output by 0.17% annually.


Author(s):  
Komandur S. Sunder Raj

The objectives of an effective power plant performance monitoring program are several-fold. They include: (a) assessing the overall condition of the plant through use of parameters such as output and heat rate (b) monitoring the health of individual components such as the steam generator, turbine-generator, feedwater heaters, moisture separators/reheaters (nuclear), condenser, cooling towers, pumps, etc. (c) using the results of the program to diagnose the causes for deviations in performance (d) quantifying the performance losses (e) taking timely and cost-effective corrective actions (f) using feedback techniques and incorporating lessons learned to institute preventive actions and, (g) optimizing performance. For the plant owner, the ultimate goals are improved plant availability and reliability and reduced cost of generation. The ability to succeed depends upon a number of factors such as cost, commitment, resources, performance monitoring tools, instrumentation, training, etc. Using a case study, this paper discusses diagnostic techniques that might aid power plants in improving their performance, reliability and availability. These techniques include performance parameters, supporting/refuting matrices, logic trees and decision trees for the overall plant as well as for individual components.


Author(s):  
David A. T. Rodgers ◽  
Fred D. Lang

This paper presents methods and practices of improving heat rate through testing and, most importantly, through heat rate monitoring. This work was preformed at Portland General Electric’s 585 MWe Boardman Coal Plant, which used two very different Powder River Basin and Utah coals ranging from 8,100 to over 12,500 Btu/lbm. Such fuel variability, common now among coal-fired units was successfully addressed by Boardman’s on-line monitoring techniques. Monitoring has evolved over the past ten years from a Controllable Parameters approach (offering disconnected guidance), to a systems approach in which fuel chemistry and heating value are determined on-line, their results serving as a bases for Second Law analysis. At Boardman on-line monitoring was implemented through Exergetic System’s Input/Loss Method. Boardman was one of the first half-dozen plants to fully implement Input/Loss. This paper teaches through discussion of eight in-plant examples. These examples discuss heat rate improvements involving both operational configurations and plant components: from determining changes in coal chemistry and composite heating value on-line; to recognizing the impact of individual rows of burners and pulverizer configurations; to air leakage identifications; to examples of hour-by-hour heat rate improvements; comparison to effluent flows; etc. All of these cases have applicability to any coal-fired unit.


Sign in / Sign up

Export Citation Format

Share Document