scholarly journals Effect of different pasture legumes on growth profile and forage production of the selected native pasture grasses mix at different growth stages

2021 ◽  
Vol 888 (1) ◽  
pp. 012061
Author(s):  
I G N Jelantik ◽  
I Benu ◽  
T T Nikolaus ◽  
G E M Malelak ◽  
A Firmanto ◽  
...  

Abstract The present experiment aimed to investigate the effect of introducing different pasture legumes on the growth profile and forage production of the selected native pasture grass species at different stages of growth. In a completely randomized design with 5 treatments and 5 replications, the mixture of Sorghum plumosum (SP) and Bothriochloa pertusa (BP) was introduced respectively with one of the forage legumes ie. Alysicarpus vaginalis (AV), Pueraria phasoloides (PP), Desmodium incanum (DI), and Clitoria ternatea (CT). Growth profile and forage production were measured at 40, 60, and 80 days after planting. Results showed that CT and PP significantly improved the growth and DM production of SP and suppressed (P<0.05) the growth of BP during the early vegetative stage but did not during the late vegetative stage. Introduction of legumes reduced (P<0.05) DM production of SP and the total forage production but improved (P<0.001) the DM production of B. pertusa as well as a leaf:stem ratio of both types of grass at the generative stage. PP had the highest (P<0.05) contribution of legumes to the total DM forage production during early and vegetative stages, meanwhile AV and DI during the generative stage. In conclusion, the introduction of forage legumes did not improve the DM production of both grass species but modify their growth profile toward a better quality as shown by increased leaf:stem ratio. P. phasoloides provide the highest foliage during the vegetative stage and A. vaginalis and D. incanum during the generative stage.

1997 ◽  
Vol 37 (7) ◽  
pp. 755 ◽  
Author(s):  
R. J. Jones

Summary. Pasture production and steer liveweight gain were compared on native pasture (Bothriochloa decipiens, Heteropogon contortus, Themeda triandra and Chrysopogon fallax) and on native pasture oversown with Indian couch or Indian bluegrass (Bothriochloa pertusa). This grass was not a planned introduction to the area but is spreading in Central and North Queensland and its value as a pasture species is questioned by graziers. There were 3 nominal stocking rates of 0.3, 0.6 and 0.9 steers/ha. Each paddock was stocked with 3 steers of stratified ages. The experiment was sown in March 1988 and terminated in June 1993. The experiment, sited 50 km south of Townsville in eucalypt woodland on a solodic-solodised-solonetz soil, was sown in March 1988 and terminated in June 1993. Increases in stocking rate resulted in a linear decline in both pasture yield (by 3–5 t/unit increase in stocking rate) and steer gains (by more than 100 kg/unit increase in stocking rate). Differences between pastures were apparent only at the medium and high stocking rates where, over time, Indian couch gave higher pasture yields and steer gains. Younger steers gained far more weight than older steers. Mean gains over 3 years were weaners 125 kg/year, yearlings 93 kg/year and 2-year-old steers 46 kg/year. Native pasture remained fairly stable botanically at the low stocking rate, but the tufted perennial grass species declined at both the medium and high stocking rates. Sowing Indian couch hastened the botanical changes due to stocking rate, and it became the dominant species at these higher stocking rates. At the low stocking rate, the contribution of Indian couch declined from initial values indicating that this is not an invasive species in the area at a low stocking rate. Contribution of Indian couch to pasture yield was linearly related to stocking rate. Nutritional quality of the Indian couch was similar to the other native perennial grasses though calcium concentration was higher. Increased steer gains were related to higher yield on Indian couch pastures at the higher stocking rates rather than to improved quality. Maximum liveweight gain/ha was achieved at about 0.6 steers/ha. Stocking at 0.9 steers/ha was not sustainable. Even at the low stocking rate, steers would need to spend about 2.8 years on the pastures after weaning to reach 500 kg liveweight. It was concluded that B. pertusa is a useful pasture grass in this environment giving steer gains equal to, or higher than, the gains from the native pasture which it replaced.


2011 ◽  
Vol 15 ◽  
pp. 173-180
Author(s):  
K.H. Widdup ◽  
B.A. Barrett

White clover (Trifolium repens) is a valuable forage and soil fertility resource whose persistence and contribution to production and profitability can be constrained by genetic, farm management, and environmental factors. Here we outline the growth stages of the plant, and factors affecting persistence at the plant and the population level in pasture. Breeding strategies that bring together new germplasm sources within white clover have improved persistence on farm. New experimental lines, including some accessing genetics from related Trifolium species, show advances in forage productivity and persistence in multi-site, mixed sward, trial systems under dairy, sheep and cattle grazing. New germplasm sources and the use of new tools for characterising and selecting superior plant material will enable increased genetic gain for traits including persistence and forage production in white clover and related forage legumes. Keywords: Lolium perenne, pasture, persistence, stolon density, Trifolium repens, white clover


Nematology ◽  
2002 ◽  
Vol 4 (4) ◽  
pp. 541-552 ◽  
Author(s):  
Alfonso Navas ◽  
Miguel Talavera

AbstractA plant-parasitic nematode survey was undertaken in mountainous pastures of southern Spain. Sixty-three species of plant-parasitic nematodes distributed over 25 genera were associated with pastures and grasslands in southern Spain. Paratylenchus species (P. microdorus, P. similis, P. nanus and P. ciccaronei) were the most abundant and prevalent plant-parasitic nematodes found. Pratylenchus neglectus and P.thornei were widely distributed in 55 and 41% of sites, respectively. Amplimerlinius globigerus, Helicotylenchus digonicus, H. dihystera, H. tunisiensis, Merlinius brevidens, M. microdorus, Rotylenchus unisexus and Scutylenchus quadrifer were found in more than 10% of the fields, on occasion at densities of more than 200 per 100 cm³ of soil. A further 49 species of plant-parasitic nematodes were identified and reported. A pot experiment, using a range of grasses and forage legumes adapted to the zone, ascertained the host status of the most abundant plant-parasitic nematodes. Helicotylenchus digonicus, M. microdorus and P.microdorus populations were maintained or increased by all grasses or legumes tested. In general, grasses were better hosts of P.neglectus and P.thornei than the pasture legumes tested. Medicago minima reduced P.thornei densities after 3 months of growing.


Weed Science ◽  
2021 ◽  
pp. 1-43
Author(s):  
Marlon O. Bastiani ◽  
Nilda Roma-Burgos ◽  
Ana C. Langaro ◽  
Reiofeli A. Salas-Perez ◽  
Christopher E. Rouse ◽  
...  

Abstract South African lovegrass (Eragrostis plana Nees) is the most important weed of native pastures in southern Brazil. Management options are limited under water stress conditions and glyphosate has been the main tool for control. This study compared four salts of glyphosate applied at three growth stages, and determined the glyphosate tolerance level. In addition, the performance of ammonium sulfate (AMS) under two soil moisture conditions (50% and 100% of water holding capacity), and the effect of AMS on absorption and translocation of radiolabeled 14C-glyphosate were evaluated. The potassium salt of glyphosate had the fastest activity across growth stages of E. plana, which is more vulnerable to glyphosate at panicle initiation stage. Isopropylamine salt was the slowest-acting glyphosate formulation. Younger plants were typically more easily controlled than older plants at full tillering stage. The addition of AMS increased the level of control of drought-stressed E. plana, compared to glyphosate alone, by increasing translocation out of the treated leaf and consequently increasing the concentration of glyphosate in the primary culm. This data can be used to plan an effective management program for E. plana considering the developmental stage of desired pasture grass species.


Crop Science ◽  
2002 ◽  
Vol 42 (3) ◽  
pp. 890 ◽  
Author(s):  
Blair L. Waldron ◽  
Kay H. Asay ◽  
Kevin B. Jensen

2019 ◽  
Vol 49 (7) ◽  
Author(s):  
Fábio Nunes Lista ◽  
Bruno Borges Deminicis ◽  
João Carlos de Carvalho Almeida ◽  
Saulo Alberto do Carmo Araujo ◽  
Pablo Giliard Zanella

ABSTRACT: Find shade-tolerant species is essential to the success of silvopastoral systems, increasingly frequent in recent years. In legumes, which have potential of biological nitrogen fixation, there is a great lack of knowledge when in shaded environments.The cultivation of four tropical forage (Neonotonia wightii, Pueraria phaseoloides, Macrotyloma axilare and Arachis pintoi) was evaluated when submitted to artificial shade levels (30, 50 and 70% shade) and in full sun during water and drought seasons. The design used was in randomized complete blocks in a sub-divided plot scheme with four replications. In the Water-season the Forage Peanuts had higher forage production in full sun (11 ton ha-1 DM), and under shade did not differ from Perennial Soybean, higher than the others in all levels of shade. In Drought-season the forage production was 61% lower than in Water-season. The highest crude protein levels were reported in Forage Peanuts, Tropical Kudzu and Perennial Soybean, 19.0; 18.3 and 18.2% respectively in the Water-season. Forage Peanuts is a good option for use in silvopastoral systems although there is a small reduction in forage production (average of 23.7%). In general, species of fabaceae showed a greater reduction in forage production in the period of water deficit; however, shading at levels of 30% to 50% contribute to mitigation of water shortage. Although, there is a small reduction in forage production, withexception of perennial soybeans in dry season, it is advisable to use tropical forage legumes in silvopastoral systems, since forage quality is not affected by shade.


Author(s):  
W.A. Jacques

There are many points of approach to a consideration of root development in pasture plants, but I wish to confine myself to this effect on the root system of different rest periods between the removal of leaves and outline the plants reaction to them


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1086-1088 ◽  
Author(s):  
Hiroshi Shinozuka ◽  
Noel O.I. Cogan ◽  
German C. Spangenberg ◽  
John W. Forster

RNA-Seq methodology has been used to generate a comprehensive transcriptome sequence resource for perennial ryegrass, an important temperate pasture grass species. A total of 931 547 255 reads were obtained from libraries corresponding to 19 distinct tissue samples, including both vegetative and reproductive stages of development. Assembly of data generated a final filtered reference set of 48 713 contigs and scaffolds. The transcriptome resource will support whole genome sequence assembly, comparative genomics, implementation of genotyping-by-sequencing (GBS) methods based on transcript sampling, and identification of candidate genes for multiple biological functions.


Sign in / Sign up

Export Citation Format

Share Document