scholarly journals Analysis and Design of Cable Stayed and Suspension Bridge Subjected to Wind Loading

2021 ◽  
Vol 889 (1) ◽  
pp. 012059
Author(s):  
Farhan Farid Reshi ◽  
Priyanka Singh ◽  
Shivangil ◽  
Ravinder Kumar Tomar ◽  
S K Singh

Abstract Bridge can be defined as a structure which is built to pass a physical obstacle such as river road or valley and this structure does not close the way underneath it. The main objective of the bridgeis to provide a passage which can surpass any obstacle. A bridge is designed according to various specific purposes depending upon the need function and various physical factors. Cable-stayed bridge is having one or more columns called towers or pylons, with the cables directly supporting the bridge deck. Cable-stayed bridge is the bridge form in which the weight of the deck is supported by a number of nearly straight diagonal cables in tension running directly to one or more vertical towers. The towers transfer the cable forces to the foundations through vertical compression. The tensile forces in the cables also put the deck into horizontal compression. A suspension bridge is able to carry vertical loads with the help of curved cables in tension. Transfer of load takes place to both the towers, which is transferred by vertical compression to the ground, and anchorages, which is able to withstand the inward and occasionally vertical pull of the cables. The suspension bridge is often looked as an upside-down arch in tension with only the towers as compression members. In this research work, analysis and design of cable stayed and suspension bridge subjected to wind loading has been carried out.

2011 ◽  
Vol 18 (9) ◽  
pp. 1380-1405 ◽  
Author(s):  
Mohamed Abdel-Rohman

The influence of the higher order modes of vibrations on the dynamic response of a suspension bridge is studied for two cases of loading. The first case is when the bridge is subjected to wind loading on the suspended cables and the bridge deck. The second case is when the bridge is subjected to a moving load on the bridge deck. The dynamic responses of the bridge deck and the suspended cables considering some higher order modes of vibrations are compared with the bridge response when it is modeled by the first dominant modes for each case of loading. It is shown that the influence of the higher order modes when the suspension bridge is subjected to wind loading is more significant than in the case when the bridge is subjected to a moving load. Therefore, it is recommended to investigate the influence of some higher order modes on the dynamic response of the suspension bridges and not always to depend on the response estimated from the first dominant modes of vibration.


2020 ◽  
Vol 220 ◽  
pp. 01070
Author(s):  
Priyanka Singh ◽  
Mirza Jahangir Baig ◽  
Bhumika Pandey ◽  
Kartik Papreja

In the world of Civil Engineering, bridges are an example of structural art expressing how much the structures have evolved till present times. The concept and design of bridges has been evolved over the past years, having numerous amounts of different geometrical models and methods to construct bridges. As the development and innovation has reached so far, the concept of bridges has made a great impact on global infrastructure by creating sustainable, effective, and aesthetical bridges around the world. development of the finest aesthetical and sustainable designs for bridges which are known as Cable Stayed BridgesThe bridge form in which the weight of the deck is supported by a number of nearly straight diagonal cables in tension running directly to one or more vertical towers. The towers transfer the cable forces to the foundations through vertical compression. The tensile forces in the cables also put the deck into horizontal compression. Cable stayed bridges are the types of bridges those are best suited for connecting wide-span crossings. Construction of cable stayed bridge is widely promoted all over the world and construction of more than 600 cable stayed bridges are recorded till date. This type of bridge is preferred over any other type due to its possible construction to the indefinite length, availability of multiple design options with the possibility of symmetrical design and excellent strength. In this paper we shall discuss numerous case studies of the cable stayed bridges, compile all the beneficial data for most of the cable stayed bridges located in India.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


Author(s):  
Dusan Radojevic ◽  
Keith Kirkwood

The Angus L. Macdonald Bridge, a major suspension bridge that crosses Halifax Harbour in Halifax, Nova Scotia, opened to traffic in 1955. The bridge deck has reached the end of its service life, and the design of the new bridge superstructure and its replacement sequence were completed in 2014. The entire suspended structure and hangers are now being replaced sequentially during night and weekend closures while the bridge is opened for traffic during the daytime. The erection sequence is supported by sophisticated automated erection analysis models which take into account the geometry of the existing bridge, positioning of the erection equipment on the deck, and hanger and strand jack adjustments that are required during construction. Significant wind tunnel testing and analysis have been performed to ensure aerodynamic stability of the bridge during erection and in its final condition.


2021 ◽  
Author(s):  
Li Dong ◽  
Bin Xie ◽  
Dongli Sun ◽  
Yizhuo Zhang

<p>Cable forces are primary factors influencing the design of a cable-stayed bridge. A fast and practical method for cable force estimation is proposed in this paper. For this purpose, five input parameters representing the main characteristics of a cable-stayed bridge and two output parameters representing the cable forces in two key construction stages are defined. Twenty different representative cable-stayed bridges are selected for further prediction. The cable forces are carefully optimized through finite element analysis. Then, discrete and fuzzy processing is applied in data processing to improve their reliability and practicality. Finally, based on the input parameters of a target bridge, the maximum possible output parameters are calculated by Bayes estimation based on the processed data. The calculation results show that the average prediction error of this method is less than 1% for the twenty bridges themselves, which provide the primary data and less than 3% for an under-construction bridge.</p>


Author(s):  
Yuhao Huang ◽  
Liu Chao ◽  
Xu Dong

<p>Recently, composite girder cable-stayed bridge is widely used in the world. Since the existing design method takes less focus on the principal stress of the top and bottom slab, the cracking problem of the concrete bridge deck has not been solved perfectly yet. Based on the spatial grid model, this paper takes Guan He Bridge in Jiangsu province as an example to analyze this kind of structure. Monitoring the principal stress of the concrete bridge deck is proposed for the first time to study the effect of diagonal crack. The principal stress of the concrete deck in the middle span, the quartile span, one-eighth of the span, the side span, the bridge tower, and the auxiliary pier are observed respectively. Comparing the theoretical values with the measured value, the results show that the actual stress state of the whole concrete bridge deck during construction is in accordance with the theoretical calculation. For composite girder cable-stayed bridge, the concrete bridge deck is prone to crack, so it is very significant to control the quality in the construction stage, which can provide a guarantee for the safety and durability of the structure.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-14
Author(s):  
Michalina Markousi ◽  
Dimitrios K. Fytanidis ◽  
Johannes V. Soulis

Reducing the wind loading of photovoltaic structures is crucial for their structural stability. In this study, two solar panel arrayed sets were numerically tested for load reduction purposes. All panel surface areas of the arrayed set are exposed to the wind similarly. The first set was comprised of conventional panels. The second one was fitted with square holes located right at the gravity center of each panel. Wind flow analysis on standalone arrayed set of panels at fixed inclination was carried out to calculate the wind loads at various flow velocities and directions. The panels which included holes reduced the velocity in the downwind flow region and extended the low velocity flow region when compared to the nonhole panels. The loading reduction, in the arrayed set of panels with holes ranged from 0.8% to 12.53%. The maximum load reduction occurred at 6.0 m/s upwind velocity and 120.0° approach angle. At 30.00 approach angle, wind load increased but marginally. Current research work findings suggest that the panel holes greatly affect the flow pattern and subsequently the wind load reduction. The computational analysis indicates that it is possible to considerably reduce the wind loading using panels with holes.


Sign in / Sign up

Export Citation Format

Share Document