scholarly journals Distribution of marine debris in Jakarta Bay and its implication to the coastal ecosystem

2021 ◽  
Vol 925 (1) ◽  
pp. 012017
Author(s):  
Nasir Sudirman ◽  
Devi Dwiyanti Suryono ◽  
August Daulat ◽  
Agustin Rustam ◽  
Hadiwijaya L Salim ◽  
...  

Abstract Citarum River, which ended up in Muaragembong, Bekasi Regency-West Java Province, is known recently as one of the most polluted rivers globally, including pollution caused by plastic litter. This research was conducted in the surrounding river, estuary, and mangrove ecosystem in Muaragembong, which aimed to determine macro debris and analyze its impact on the coastal ecosystem. Marine debris sampling in the mangrove ecosystem was done by line transect, while the net using for marine debris sampling surrounding river and estuary. The result showed that debris composition in Muaragembong consisted of 80% inorganic and 20% organic, where plastic debris dominated with 50-81% and was distributed throughout the estuary and mangrove ecosystem. The highest density was found in the mangrove ecosystem in the Kali Mati Estuary (Pantai Sederhana Village) with 222.67 waste/m2, while the heaviest waste was found in the Bendera Estuary (Pantai Bahagia Village) 4,663.64 grams/m2. This condition explained the lack of marine debris management in the Muaragembong estuary, where most inorganic debris originated from household litter. This research also supports data and information for baseline Indonesia’s marine plastic debris due to comprehensive data needed to reduce 70% of marine plastic debris by 2025.

2020 ◽  
Vol 45 (2) ◽  
pp. 97-102
Author(s):  
Intan Suci Nurhati ◽  
Muhammad Reza Cordova

Indonesia set the mission to reduce marine plastic debris by 70% between 2018-2025 with a global significance to support the UN Sustainable Development Goal 14.1. This short communication assesses marine debris baseline estimates in Indonesia before 2020 from available contributions and provides recommendations for monitoring marine debris mitigation between 2021-2025. Widely ranging model estimates of plastic debris released into seas highlight the roles of data source, the spatial resolution of models, and in situ data to provide representative baseline values. Recognizing the strengths and uncertainties of available contributions, model outputs converge on a baseline value of 0.52 ± 0.36 million tons (Mt) per year prior to 2020 in Indonesia, therefore setting a targeted reduced number of 0.16 Mt of marine debris releases in 2025. The Indonesian Institute of Sciences showed a preliminary value of plastic debris accumulation in beaches at 113.58 ± 83.88 g/m2 monthly or equivalent to 0.40 Mt/year by assuming plastic debris is most pervasive within 3 meters from Indonesia’s 99,093 km-long coastlines. It is important to distinguish that while river monitoring data informs land-based plastic debris releases, stranded beach debris represents a fraction of debris that is not present in the water column and bottom sediments. Moving forward, monitoring initiatives to mitigate marine debris should leverage on nationwide municipality-level model estimates (e.g., the source to leakage route framework of the National Plastic Action Partnership) as well as in situ river and coastal particularly but not limited to sites co-identified in previous monitoring studies (i.e., Medan, Batam-Bintan, Padang, Jakarta-Seribu Islands, Semarang, Pontianak, Bali, Lombok, Makassar, Manado, Bitung). The latter should be conducted at least seasonally, considering evidence of monsoonal variations of marine debris release and accumulation in Indonesia. Indonesia's vastness and regional diversity require coordination among stakeholders (government agencies, research institutions, universities, NGOs, citizen scientists) to monitor progress in the environments.


2021 ◽  
Vol 925 (1) ◽  
pp. 012027
Author(s):  
FY Prabawa ◽  
NS Adi ◽  
WS Pranowo ◽  
SS Sukoraharjo ◽  
BG Gautama ◽  
...  

Abstract In 2018, the Indonesian government started a program: National Action Plan on Marine Debris, with the target to reduce 70% of marine plastic debris by 2025. Based on local research’s result in 2018, there was an estimated 0,27 to 0,59 million tons (MT) of marine plastic debris on local seas. Thus, the target of 70% debris reduction would be at 0.35 MT per year, or the reduction of 29.500 Tons of debris per month. That is a huge number to deal with, considering there are only 4 years left to 2025. To achieve the program, a roadmap was developed, parallel to other supporting programs as well the regulations, a national task force TKN PSL also established to run the programs. But an intriguing question remains: how to improve the achievement of this challenging target in a limited time? This study aimed to figure out the progress of existing waste reduction programs and contribute the way to improve the program. The method is a combination of literature review to collect data, a comparative and analytical work and finally the development of concept and action plans to formulate recommendation. We concluded that to improve the achievement of the target, proper strategy and program are needed to accelerate and boost the progress of marine debris reduction programs. To strengthen the waste reduction effort, the use of technology needs to be strongly emphasized. The program is best to be imply directly on sites, using various integrated methods to reduce more marine debris. More units of waste processing TPS 3R or “Reuse, Reduce, Recycle” are in urgency to obtained. The units will be located along the water body areas covering upstream to downstream, inland as well on-water. For the on-water site works, a concept of the green technology-based system integrated with small-sized floating TPS 3R barge, called STAMSAL P2K, is recommended to be implemented in the action plans.


2021 ◽  
Vol 925 (1) ◽  
pp. 012005
Author(s):  
H Diastomo ◽  
M Y Surya ◽  
A D Sakti ◽  
E Agustina ◽  
Trismadi

Abstract Marine debris pollution is one of biggest problem that occurs in coastal city in Indonesia without exception Jakarta. Those marine debris increase with the addition of the Jakarta population. The main source of marine debris came from 13 rivers that flow into Jakarta Bay. Estimated that around 487 tons/day plastic debris that mismanaged potentially flows into the rivers and ended into the Jakarta Bay. Tidal forcing and current mainly affect the hydrodynamic condition in Jakarta Bay that drive the marine debris spread out from river estuary. The marine debris movement follow the hydrodynamic pattern due to the nature of floating marine debris. The proposed Giant Sea Wall in Jakarta Bay also affected in hydrodynamic condition in Jakarta Bay. As a result, the movement pattern of the marine debris influenced due to complex hydrodynamic condition in Jakarta Bay.


2020 ◽  
Vol 116 (5/6) ◽  
Author(s):  
Trishan Naidoo ◽  
Anusha Rajkaran ◽  
Sershen Not available

Entanglement and ingestion of plastics are the main ecological impacts of marine plastic debris on marine biota, but indirect effects such as the transport of alien species and benthic smothering are also important to note. Entanglement of invertebrates, sharks, turtles, birds and marine mammals is mainly caused by macroplastics (>5 mm), and leads to reduced mobility, ineffective foraging and subsequent mortality. The main plastic types associated with entanglement are improperly discarded fishing nets, lines, ropes and straps. In South Africa and surrounding waters, plastic ingestion has been reported in a number of marine species: sharks (n=10), fish (n>=7), turtles (n=1) and birds (n=36). Lethal (macroplastic) and sub-lethal effects (microplastic ≤5 mm) of marine debris on biota have been noted, but at the time of this review there were no published reports on impacts at the population level. Consumed shellfish are possible vectors for the introduction of microplastics into humans. The specific impacts of microplastic ingestion on human health are largely unknown, but additives associated with plastics represent a threat. The research infrastructure in South Africa is insufficient to monitor and characterise marine plastic debris and, in many cases, not in line with global standards. More research effort is needed to understand the impacts of marine plastic debris on humans and marine biota in South Africa, particularly at the population level. Significance • Macroplastics affect marine biota mainly via entanglement and microplastics largely through ingestion. • Macro- and microplastic interactions with biota can result in sub-lethal effects and mortality but no population effects have been reported for South Africa. • Consumed shellfish are a potential source of microplastics for humans but their potential effects in humans remain unknown. • Better infrastructure is needed for improved monitoring and research on the effects of marine debris in South Africa.


2021 ◽  
Author(s):  
Aikaterini Kikaki ◽  
Ioannis Kakogeorgiou ◽  
Paraskevi Mikeli ◽  
Dionysios E. Raitsos ◽  
Konstantinos Karantzalos

<p>Plastic debris in the global ocean is considered an essential issue with severe implications for human health and marine ecosystems. Remote sensing is a useful tool for detecting and identifying marine pollution; however, there are still few studies and benchmark datasets for developing monitoring solutions for marine plastic debris detection from high-resolution satellite data.</p><p>Here, we present an annotated plastic debris dataset from different geographical regions, seasons, and years, including annotations for sea surface features (e.g., foam), objects (e.g., ship) and floating macroalgae species such as Sargassum. Our dataset is based on high-resolution multispectral satellite observations collected mainly for the period 2014-2020 over the Gulf of Honduras (Caribbean Sea). Over this region, large plastic debris masses and Sargassum macroalgae blooms have been frequently reported, suggesting that it is an ideal region to examine satellite sensors' effectiveness in plastic debris identification, as well as monitoring along with sea surface circulation and meteorological data.</p><p>We also present a set of machine learning classification frameworks for marine debris detection on high-resolution satellite imagery, comparing qualitatively and quantitatively their overall performance. The new algorithms were validated against different regions that have been reported as major plastic polluted areas, as well as their performance was compared to well-established FAI and new promising FDI. This benchmark study can trigger more research and developement efforts towards the systematic detection and monitoring of marine plastic pollution.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Rachel K. Giles ◽  
Cindy Anh Thu Nguyen ◽  
Thu Thi Yến Hồ ◽  
Công Văn Nguyến ◽  
Ngoc Thi Ngô ◽  
...  

Vietnamese rivers are among the top ten contributors of anthropogenic debris to the ocean. However, there is limited empirical research documenting debris and its effects in Northern Vietnam. The goal of our research was to conduct the first baseline assessment of anthropogenic debris in the Red River. We aimed to understand the sources, accumulation patterns, and ecological effects of anthropogenic debris in the Red River (Song Hong) estuary. To assess debris patterns, we conducted standing stock debris surveys at sites in the mouth, and upstream of the Red River. To assess the ecological effects of anthropogenic debris on mangrove ecosystems, we measured mangrove diameter, canopy cover, and number of crab burrows/m2 in the same debris transects. Anthropogenic debris was found at all sites, and plastic was the most common material. We identified a non-significant trend, whereby ecological indices declined with increasing amounts of debris. Overall, our results demonstrate that anthropogenic debris is ubiquitous in the Red River estuary, composition varies among sites, and this debris may have adverse or neutral ecological effects on mangrove ecosystem health. Future work should conduct debris assessments at larger spatial scales, and assess ecological responses at the community or population level over extended time periods.


2021 ◽  
Vol 1 (11) ◽  
Author(s):  
Eugenius Alfred Renjaan ◽  
Dortje Theodora Silubun ◽  
Dullah Irwan Latar ◽  
Marvin Mario Makailipessy ◽  
Megawati Elisabet Juley

The research was carried out on Langgur Beach from January to March 2021. The purpose of this study was to determine the correlation and dispersion of marine debris to molluscs in the Intertidal Zone of Langgur Beach, the edge of the Rosenberg Strait, Kei Islands, Indonesia. The data collection method of this research is the quadratic method. The results of the study noted that the total marine debris accumulated at 21 sampling points amounted to 7,596 items consisting of 14 categories of marine debris and 6 species of Mollusca were found. The results of the analysis show that the dispersion of surface marine debris and marine debris in the sediments are scattered in groups, the dispersion per type of macrozoobenthos on the surface and in the sediments is scattered in groups, regularly and randomly. The results of the analysis also showed a positive correlation between marine plastic debris on the sediment surface and the bivalves of Gafrarium pectinatum on the sediment surface.


2019 ◽  
Vol 5 ◽  
pp. 104
Author(s):  
Suhendra Purnawan ◽  
Subari Yanto ◽  
Ernawati S.Kaseng

This study aims to describe the profile of vegetation diversity in the mangrove ecosystem in Tamuku Village, Bone-Bone-Bone District, North Luwu Regency. This research is a qualitative research using survey methods. The data collection technique uses the Quadrant Line Transect Survey technique. The data analysis technique uses the thinking flow which is divided into three stages, namely describing phenomena, classifying them, and seeing how the concepts that emerge are related to each other. The results of this study are the profile of mangrove vegetation in Tamuku Village, which is still found 16 varieties of true mangrove vegetation and 7 varieties of mangrove vegetation joined in the coastal area of Tamuku Village, Bone-Bone District, North Luwu Regency, South Sulawesi. The condition of mangrove vegetation in Tamuku Village is currently very worrying due to human activities that cause damage such as the project of normalization of flow, opening of new farms, disposal of garbage, water pollution due to chemicals, and exploitation of mangrove forests for living needs. The impact is ecosystem damage and reduced vegetation area as a place to grow and develop mangroves.


Fuel ◽  
2019 ◽  
Vol 257 ◽  
pp. 116033 ◽  
Author(s):  
María E. Iñiguez ◽  
Juan A. Conesa ◽  
Andrés Fullana

2016 ◽  
Vol 50 (11) ◽  
pp. 5668-5675 ◽  
Author(s):  
Alexandra ter Halle ◽  
Lucie Ladirat ◽  
Xavier Gendre ◽  
Dominique Goudouneche ◽  
Claire Pusineri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document