scholarly journals Modeling of chloroform content in drinking water of infiltration water intake by periods of the annual cycle. Part 1. Extended flood period

2021 ◽  
Vol 938 (1) ◽  
pp. 012008
Author(s):  
M A Malkova ◽  
A I Vasileva ◽  
N D Minchenkov ◽  
E A Kantor

Abstract A relationship was found between the chloroform content in drinking water and the parameters characterizing the water quality (turbidity, chromaticity, oxidizability) during the extended flood period (March - June), isolated from the eighteen-year period of the infiltration water intake operation. Two time series were formed, including the monthly average values of the parameters for the entire observation period (72 values) and the averaged values of the parameters corresponding to each year (18 values). Two time series were formed, including the monthly average values of the parameters for the entire observation period (72 values) and the averaged values of the parameters corresponding to each year (18 values). Correlation-regression analysis showed that none of the parameters have a decisive significance for the chloroform content. Multiple correlation-regression analysis revealed that the regression equation for the time series of the averaged values of the parameters corresponding to each year is statistically reliable, is characterized by an acceptable mean error (about 12%) and can be used to assess the chloroform content in drinking water.

2020 ◽  
Vol 50 (4) ◽  
pp. 147-163
Author(s):  
Dawid Szpak ◽  
Janusz R. Rak ◽  
Krzysztof Boryczko ◽  
Izabela Piegdoń ◽  
Jakub Żywiec

AbstractThe purpose of the work is to analyze the risk for surface water intake, taking into account factors affecting the water quality. A three-parameter risk definition was proposed. It was found that the analyzed water intake has an efficient system that protects consumers against drinking water of inadequate quality (multibarier system). The task of the water supply company is to maintain its security measures (including a caution and warning station, biomonitoring) in a state of efficiency.


2013 ◽  
Vol 13 (3) ◽  
pp. 835-845
Author(s):  
Fei Chen ◽  
William B. Anderson ◽  
Peter M. Huck

An integrated approach for the identification and assessment of the most critical chemical contaminant(s) at a drinking water intake has been developed. It involves the determination of a threshold or critical raw water concentration (CRWC) for target contaminants using the observed overall removal efficiency of a specific water treatment plant (WTP) and regulated drinking water concentrations for the target contaminants. The exceedance probability relative to the CRWC based on historical raw water quality monitoring data is then calculated. Finally, the integration of the raw water quality data and the overall efficiency of a particular WTP sequence allows for identification of the most critical contaminant(s) as well as an advance indication of which contaminants are most likely to challenge a plant. The proactive nature of this approach gives a utility the impetus and time to assess current treatment processes and potential alternatives. In addition, it was found that three- or four-parameter theoretical distributions are more appropriate than two-parameter probability distributions for the fitting of raw water quality data. This study reveals that the reliance on raw and/or treated water contaminant concentrations in isolation or on theoretical removals through treatment processes can, in some circumstances, be misguided.


2010 ◽  
Vol 113-116 ◽  
pp. 1367-1370 ◽  
Author(s):  
Bin Sheng Liu ◽  
Ying Wang ◽  
Xue Ping Hu

There are many ways to predict drinking water quality such as neural network, gray model, ARIMA. But the prediction precise is need to improve. This paper proposes a new forecast method according the characteristic of drinking water quality and the evidence showed that the prediction is effectively. So it is able to being used in actual prediction.


Author(s):  
X. Q. Mo ◽  
G. W. Lan ◽  
Y. L. Du ◽  
Z. X. Chen

Abstract. Precipitation forecasts play the role in flood control and drought relief. At present, the time series analysis and the linear regression analysis are two of most commonly used methods. The time series analysis is relatively simple as it only requires historical precipitation data. The model of the linear regression analysis can ensure high accuracy for causality analysis and short, medium and long-term prediction. Guilin is the region of the heavy rain center in Guangxi, which frequently suffers serious losses from rainstorms. Selecting a better model to predict precipitation has the important reference significance for improving the accuracy of precipitation weather forecast. In this research, the two methods are used to predict precipitation in Guilin. According to data of the monthly maximum precipitation, monthly average daily precipitation and monthly total precipitation from 2014 to 2016, this paper establishes the time series model and linear regression analysis model to predict precipitation in 2017 and compare the forecast results. The results show that the monthly average daily precipitation model is best with the accuracy of the time series model, and the residual error of predicted precipitation is 3.08 mm, but the change trend of predicted precipitation is not accord with the actual situation. The residual error is only 0.45 mm through using inter-annual linear regression equation to predict the precipitation, but the predicted summer precipitation is quite different from the actual one. The linear equation established by different seasons is used to predict the precipitation with residual error of 3.25 mm, and it is coincident for the predicted precipitation trend with the actual situation. Furthermore, the predictions fitting errors of spring, summer, autumn and winter are all less than 20%, which are within the scope of the specification prediction error.


2021 ◽  
pp. 33-40
Author(s):  
L.R. Rakhmatullina ◽  
◽  
R.A. Suleymanov ◽  
T.K. Valeev ◽  
Z.B. Baktybaeva ◽  
...  

Providing population with drinking water conforming to all hygienic standards is a pressing issue on territories where oil fields are located. In our research we focus on assessing water supply sources located in areas with oil fields and health risks for people who consume water from centralized water supply systems aimed at providing drinking water and water for communal use. Our research goal was to hygienically assess health risks for people living in areas where oil fields were located in Bashkortostan; these health risks were caused by people consuming water from centralized water supply systems. Our analysis was based on data obtained via laboratory research performed by «Bashkommunvodokanal» water supply facility and Bashkortostan Center for Hygiene and Epidemiology; the data were collected in 2016–2018 in Chishminskiy and Dablekanovskiy districts. Risks associated with drinking water quality were assessed taking into account all the requirements fixed in the Guide R 2.1.10.1920-04. Organoleptic risks related to water olfactory-reflex properties were assessed according to procedures fixed in the Methodical Guidelines MR 2.1.4.0032-11. Overall carcinogenic health risk assessed in Chishminskiy and Davlekanovskiy districts was higher than maximum permissible level due to chromium6+, DDT, lindane and arsenic detected in drinking water. Population carcinogenic risks amounted to 7 additional cases for people who consumed water supplied via water intake in Alkino-2 settlement; 69 additional cases, Isaakovskiy water intake; 76 additional cases, Kirzavodskoy water intake. Results obtained via non-carcinogenic risk assessment performed for all examined territories indicate that diseases might occur in the hormonal system (HQ =3.04–4.56), liver (HQ =2.3–3.83), and kidneys (HQ =1.47–2.45). The highest non-carcinogenic risks were detected for people who took water from Kirzavodskoy water intake in Davlekanovskiy district. We also detected unacceptable organoleptic risk (higher than 0.1) caused by excessive water hardness in Chishminskiy district. All the obtained results call for developing and implementing a set of activities aimed at reducing health risks for population.


2017 ◽  
Vol 6 (2) ◽  
pp. 51-55
Author(s):  
Aysylu Ayratovna Islamova ◽  
Maria Yuryevna Kolbina ◽  
Rishat Yakhievich Safikhanov

This paper examines effects of drinking water components, namely calcium and magnesium ions on the human body as well as it lists the main diseases that occur with prolonged use of hard water. Kostarevsky water intake is described as the only source of centralized water supply of the city. The paper contains data of ecological monitoring of drinking water taken from Kostarevsky water intake in Birsk from 2015 to 2017. The authors compare drinking water in Birsk and some other cities of the Republic of Bashkortostan. The chemical composition of the water was determined by titrimetric, gravimetric, colorimetric, organoleptic, and microbiological methods of investigation. The results of the analysis show that the water given to the population of Birsk along the central water supply line is microbiologically favorable. The chemical composition of water almost in all respects meets the requirements of Sanitary Regulations and Standards 2.1.4.1074-01 Drinking water. Hygienic requirements for water quality. However, the analysis results show that the rigidity of the water exchange is beyond the permissible limit of the norm, which can adversely affect the health of the population. The results obtained during the work can be useful for further ecological monitoring of drinking water in Birsk, Republic of Bashkortostan.


2021 ◽  
pp. 33-40
Author(s):  
L.R. Rakhmatullina ◽  
◽  
R.A. Suleymanov ◽  
T.K. Valeev ◽  
Z.B. Baktybaeva ◽  
...  

Providing population with drinking water conforming to all hygienic standards is a pressing issue on territories where oil fields are located. In our research we focus on assessing water supply sources located in areas with oil fields and health risks for people who consume water from centralized water supply systems aimed at providing drinking water and water for communal use. Our research goal was to hygienically assess health risks for people living in areas where oil fields were located in Bashkortostan; these health risks were caused by people consuming water from centralized water supply systems. Our analysis was based on data obtained via laboratory research performed by «Bashkommunvodokanal» water supply facility and Bashkortostan Center for Hygiene and Epidemiology; the data were collected in 2016–2018 in Chishminskiy and Dablekanovskiy districts. Risks associated with drinking water quality were assessed taking into account all the requirements fixed in the Guide R 2.1.10.1920-04. Organoleptic risks related to water olfactory-reflex properties were assessed according to procedures fixed in the Methodical Guidelines MR 2.1.4.0032-11. Overall carcinogenic health risk assessed in Chishminskiy and Davlekanovskiy districts was higher than maximum permissible level due to chromium6+, DDT, lindane and arsenic detected in drinking water. Population carcinogenic risks amounted to 7 additional cases for people who consumed water supplied via water intake in Alkino-2 settlement; 69 additional cases, Isaakovskiy water intake; 76 additional cases, Kirzavodskoy water intake. Results obtained via non-carcinogenic risk assessment performed for all examined territories indicate that diseases might occur in the hormonal system (HQ =3.04–4.56), liver (HQ =2.3–3.83), and kidneys (HQ =1.47–2.45). The highest non-carcinogenic risks were detected for people who took water from Kirzavodskoy water intake in Davlekanovskiy district. We also detected unacceptable organoleptic risk (higher than 0.1) caused by excessive water hardness in Chishminskiy district. All the obtained results call for developing and implementing a set of activities aimed at reducing health risks for population.


Sign in / Sign up

Export Citation Format

Share Document