scholarly journals Vegetation density analysis in Banda Aceh city before and after the tsunami using satellite imagery data

2022 ◽  
Vol 951 (1) ◽  
pp. 012073
Author(s):  
M Trishiani ◽  
S Sugianto ◽  
T Arabia ◽  
M Rusdi

Abstract Vegetation density in Banda Aceh is an important aspect of monitoring the recovery process after being hit by a tsunami on December 26, 2004. The tsunami disaster had a tremendous impact on Banda Aceh city, both physical and non-physical damage. As a result, a lot of vegetation was swept away by the tsunami waves. After the tsunami disaster, Banda Aceh City carried out rehabilitation and reconstruction to change the land cover. The increasing population growth in the city also has affected land cover. Changes in land use not following the spatial plan of the Banda Aceh can reduce the quality of the environment, e.g., reducing the vegetation density in some areas. This paper presents the utilization of Landsat 7 and Landsat 8 images to analyze the vegetation density in Banda Aceh city before dan after the tsunami in the last 15 years. This study aims to determine the ability of satellite imagery to detect vegetation density in Banda Aceh in designated years before and after the tsunami. This study uses the Normalized Difference Vegetation Index analysis to observe the trend of vegetation density in the Banda Aceh. Results show that the vegetation density in Banda Aceh City in 2004, 2005, 2009, 2015, and 2020 was dominated by low-density classes. Still, in 2015 and 2020, there was an increase in medium and high vegetation density classes. This finding shows the pattern of the vegetation density follows the progress of the recovery after 15 years hit by a tsunami.

2021 ◽  
Vol 12 (2) ◽  
pp. 288-241
Author(s):  
Mahdi Mansur Mahi ◽  
Md. Shahriar Sharif ◽  
Rhyme Rubayet Rudra ◽  
Md. Nazmul Haque

The goal of this study is to examine the effects of Rohingya Influx specially on vegetation land cover and LST in Teknaf Peninsula, Cox’s Bazar, Bangladesh over time. For doing so, the research followed three steps. Firstly, the primary and secondary data were collected from prescribed sources like LANDSAT 8 images from Earth Explorer (USGS) and the Shapefiles were collected from secondary sources. Then, Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) functions are explored in geospatial environment to assess the effect of deforestation on the region. Finally, A correlation is shown between LST and NDVI for making a decision from the environmental perspective. The findings state that, the region around the Rohingya Camps progressively lost its vegetation density as a result of increasing deforestation. According to this analysis, there was 87.87 % vegetation cover in 2013, which gradually decreased before the Rohingya Invasion in 2017. After the incident in 2018, vegetation cover drops to 75.67 %. Similarly, area with no vegetation increased more rapidly than others. The outcome showed that the transition in land cover was quicker and more noticeable in recent time. As a result, the LST has been increasing over the years. According to the study, there were around 8.71 % of areas with high temperatures in 2013, which increased to 36.86 % in 2020. It indicates that a large quantity of vegetation has been lost as a result of deforestation, and the LST of this region has changed dramatically. Furthermore, data was examined by Union to assess the individual effect from 5 Rohingya camps, and it was discovered that the situation in Teknaf Union is terrible, while the situation in Baharchhara Union is comparably better. Finally, the results of the research encourage an extensive regional environmental policy to eradicate this problem. To recompense the loss of nature govt. and responsible department should take necessary steps like hill conservation or tree plantation.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


The key to proper governance of the municipal bodies lies in knowing the geography of the region. The land cover of the region changes with respect to time. Also, there are seasonal variation in the layout of the waterbodies. Manual verification and surveying of these things becomes very difficult for want of resources. Remote Sensing Images play a very important role in mapping the land cover. In this paper, we consider such remotely sensed Multispectral Images, taken from Landsat-8. Parametric Machine learning algorithm like Maximum Likelihood Classifier has been used on those images to classify the land cover. Normalized Difference Vegetation Index (NDVI) has been calculated and integrates with the classification process. Four basic land covers have been identified for the purpose namely Water, Vegetation, Built-up and Barren soil. The area of study is Bangalore urban region where we find that the water bodies are decreasing day by day. An overall efficiency of 82% with a kappa hat 0f 0.67 has been achieved with the method. The user and the producer accuracies have also been tabulated in the Results part. The results show the land cover changes in a temporal manner


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 249 ◽  
Author(s):  
Noelline Tsafack ◽  
Simone Fattorini ◽  
Camila Benavides Frias ◽  
Yingzhong Xie ◽  
Xinpu Wang ◽  
...  

Carabid communities are influenced by landscape features. Chinese steppes are subject to increasing desertification processes that are changing land-cover characteristics with negative impacts on insect communities. Despite those warnings, how land-cover characteristics influence carabid communities in steppe ecosystems remains unknown. The aim of this study is to investigate how landscape characteristics drive carabid abundance in different steppes (desert, typical, and meadow steppes) at different spatial scales. Carabid abundances were estimated using pitfall traps. Various landscape indices were derived from Landsat 8 Operational Land Imager (OLI) images. Indices expressing moisture and productivity were, in general, those with the highest correlations. Different indices capture landscape aspects that influence carabid abundance at different scales, in which the patchiness of desert vegetation plays a major role. Carabid abundance correlations with landscape characteristics rely on the type of grassland, on the vegetation index, and on the scale considered. Proper scales and indices are steppe type-specific, highlighting the need of considering various scales and indices to explain species abundances from remotely sensed data.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Hung Nguyen Trong ◽  
The Dung Nguyen ◽  
Martin Kappas

This paper aims to (i) optimize the application of multiple bands of satellite images for land cover classification by using random forest algorithms and (ii) assess correlations and regression of vegetation indices of a better-performed land cover classification image with vertical and horizontal structures of tropical lowland forests in Central Vietnam. In this study, we used Sentinel-2 and Landsat-8 to classify seven land cover classes of which three forest types were substratified as undisturbed, low disturbed, and disturbed forests where forest inventory of 90 plots, as ground-truth, was randomly sampled to measure forest tree parameters. A total of 3226 training points were sampled on seven land cover types. The performance of Landsat-8 showed out-of-bag error of 31.6%, overall accuracy of 68%, kappa of 67.5%, while Sentinel-2 showed out-of-bag error of 14.3% and overall accuracy of 85.7% and kappa of 83%. Ten vegetation indices of the better-performed image were extracted to find out (i) the correlation and regression of horizontal and vertical structures of trees and (ii) assess the variation values between ground-truthing plots and training sample plots in three forest types. The result of the t test on vegetation indices showed that six out of ten vegetation indices were significant at p<0.05. Seven vegetation indices had a correlation with the horizontal structure, but four vegetation indices, namely, Enhanced Vegetation Index, Perpendicular Vegetation Index, Difference Vegetation Index, and Transformed Normalized Difference Vegetation Index, had better correlations r = 0.66, 0.65, 0.65, 0.63 and regression results were of R2 = 0.44, 0.43, 0.43, and 0.40, respectively. The correlations of tree height were r = 0.46, 0.43, 0.43, and 0.49 and its regressions were of R2 = 0.21, 0.19, 0.18, and 0.24, respectively. The results show the possibility of using random forest algorithm with Sentinel-2 in forest type classification in line with vegetation indices application.


Author(s):  
Perminder Singh ◽  
Ovais Javeed

Normalized Difference Vegetation Index (NDVI) is an index of greenness or photosynthetic activity in a plant. It is a technique of obtaining  various features based upon their spectral signature  such as vegetation index, land cover classification, urban areas and remaining areas presented in the image. The NDVI differencing method using Landsat thematic mapping images and Landsat oli  was implemented to assess the chane in vegetation cover from 2001to 2017. In the present study, Landsat TM images of 2001 and landsat 8 of 2017 were used to extract NDVI values. The NDVI values calculated from the satellite image of the year 2001 ranges from 0.62 to -0.41 and that of the year 2017 shows a significant change across the whole region and its value ranges from 0.53 to -0.10 based upon their spectral signature .This technique is also  used for the mapping of changes in land use  and land cover.  NDVI method is applied according to its characteristic like vegetation at different NDVI threshold values such as -0.1, -0.09, 0.14, 0.06, 0.28, 0.35, and 0.5. The NDVI values were initially computed using the Natural Breaks (Jenks) method to classify NDVI map. Results confirmed that the area without vegetation, such as water bodies, as well as built up areas and barren lands, increased from 35 % in 2001 to 39.67 % in 2017.Key words: Normalized Difference Vegetation Index,land use/landcover, spectral signature 


Author(s):  
E. O. Makinde ◽  
A. D. Obigha

The Landsat system has contributed significantly to the understanding of the Earth observation for over forty years. Since May 2013, data from Landsat 8 has been available online for download, with substantial differences from its predecessors, having an extended number of spectral bands and narrower bandwidths. The objectives of this research were majorly to carry out a cross comparison analysis between vegetation indices derived from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) and also performed statistical analysis on the results derived from the vegetation indices. Also, this research carried out a change detection on four land cover classes present within the study area, as well as projected the land cover for year 2030. The methods applied in this research include, carrying out image classification on the Landsat imageries acquired between 1984 – 2016 to ascertain the changes in the land cover types, calculated the mean values of differenced vegetation indices derived from the four land covers between Landsat 7 ETM+ and Landsat 8 OLI. Statistical analysis involving regression and correlation analysis were also carried out on the vegetation indices derived between the two sensors, as well as scatter plot diagrams with linear regression equation and coefficients of determination (R2). The results showed no noticeable differences between Landsat 7 and Landsat 8 sensors, which demonstrates high similarities. This was observed because Global Environmental Monitoring Index (GEMI), Improved Modified Triangular Vegetation Index 2 (MTVI2), Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Leaf Area Index (LAI) and Land Surface Water Index (LSWI) had smaller standard deviations. However, Renormalized Difference Vegetation Index (RDVI), Anthocyanin Reflectance Index 1 (ARI1) and Anthocyanin Reflectance Index 2 (ARI2) performed relatively poorly because their standard deviations were high. the correlation analysis of the vegetation indices that both sensors had a very high linear correlation coefficient with R2 greater than 0.99. It was concluded from this research that Landsat 7 ETM+ and Landsat 8 OLI can be used as complimentary data.


2020 ◽  
Vol 11 (2) ◽  
pp. 94-110 ◽  
Author(s):  
Syed Riad Morshed Riad Morshed ◽  
Md. Abdul Fattah ◽  
Asma Amin Rimi ◽  
Md. Nazmul Haque

This research assessed the micro-level Land Surface Temperature (LST) dynamics in response to Land Cover Type Transformation (LCTT) at Khulna City Corporation Ward No 9, 14, 16 from 2001 to 2019, through raster-based analysis in geo-spatial environment. Satellite images (Landsat 5 TM and Landsat 8 OLI) were utilized to analyze the LCTT and its influences on LST change. Different indices like Normalized Difference Moisture Index (NDMI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Buildup Index (NDBI) were adopted to show the relationship against the LST dynamics individually. Most likelihood supervised image classification and land cover change direction analysis shows that about 27.17%, 17.83% and 4.73% buildup area has increased at Ward No 9, 14, 16 correspondingly. On the other hand, the distribution of change in average LST shows that water, vacant land, and buildup area recorded the highest increase in temperature by 2.720C, 4.150C, 4.590C, respectively. The result shows the average LST increased from 25.800C to 27.150C in Ward No 9, 26.840C to 27.230C in Ward No 14 and 26.870C to 27.120C in Ward No 16. Here, the most responsible factor is the transformation of land cover in buildup areas.


Sign in / Sign up

Export Citation Format

Share Document