scholarly journals NDVI Based Assessment of Land Cover Changes Using Remote Sensing and GIS (A case study of Srinagar district, Kashmir)

Author(s):  
Perminder Singh ◽  
Ovais Javeed

Normalized Difference Vegetation Index (NDVI) is an index of greenness or photosynthetic activity in a plant. It is a technique of obtaining  various features based upon their spectral signature  such as vegetation index, land cover classification, urban areas and remaining areas presented in the image. The NDVI differencing method using Landsat thematic mapping images and Landsat oli  was implemented to assess the chane in vegetation cover from 2001to 2017. In the present study, Landsat TM images of 2001 and landsat 8 of 2017 were used to extract NDVI values. The NDVI values calculated from the satellite image of the year 2001 ranges from 0.62 to -0.41 and that of the year 2017 shows a significant change across the whole region and its value ranges from 0.53 to -0.10 based upon their spectral signature .This technique is also  used for the mapping of changes in land use  and land cover.  NDVI method is applied according to its characteristic like vegetation at different NDVI threshold values such as -0.1, -0.09, 0.14, 0.06, 0.28, 0.35, and 0.5. The NDVI values were initially computed using the Natural Breaks (Jenks) method to classify NDVI map. Results confirmed that the area without vegetation, such as water bodies, as well as built up areas and barren lands, increased from 35 % in 2001 to 39.67 % in 2017.Key words: Normalized Difference Vegetation Index,land use/landcover, spectral signature 

Author(s):  
B. İşler ◽  
Z. Aslan

Abstract. The increase in the world population and the migration of people from rural to urban areas causes an increase in artificial surfaces and causes many negative effects on the ecosystem, regional climate variations and global diversity. Nowadays, as the effects of climate change are felt more and more, it has gained importance in researches on this subject. Therefore, the estimation of the change in the vegetation density for the coming years and the determination of the land use / land cover (LULC) change in cities are very essential for urban planning. In this study, the effects of regional urbanization on vegetation are examined by using satellite data and atmospheric variables. In the vegetation analysis, multi-time index values obtained from TERRA-MODIS satellite, EVI (Enhanced Vegetation Index) and LST (Land Surface Temperature) were taken into account between the years of 2005 and 2018 in Alanya, Turkey. Temperature and precipitation were selected as the atmospheric variables and expected variations in EVI value until 2030 were estimated. In the study employed a wavelet-transformed artificial neural network (WANN) model to generate long-term (12-year) EVI forecasts using LST, temperature and precipitation. The relationship between land use / land cover and urbanization is investigated with NDBI (Normalized Difference Built-up Index) data obtained from the Landsat 8 OLI / TIRS satellite sensor. The simulation results show that The EVI value, which was 0.30 in 2018, will decrease to 0.25 in 2030.


Author(s):  
R. Bala ◽  
R. Prasad ◽  
V. P. Yadav ◽  
J. Sharma

<p><strong>Abstract.</strong> The temperature rise in urban areas has become a major environmental concern. Hence, the study of Land surface temperature (LST) in urban areas is important to understand the behaviour of different land covers on temperature. Relation of LST with different indices is required to study LST in urban areas using satellite data. The present study focuses on the relation of LST with the selected indices based on different land cover using Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) data in Varanasi, India. A regression analysis was done between LST and Normalized Difference Vegetation index (NDVI), Normalized Difference Soil Index (NDSI), Normalized Difference Built-up Index (NDBI) and Normalized Difference Water Index (NDWI). The non-linear relations of LST with NDVI and NDWI were observed, whereas NDBI and NDSI were found to show positive linear relation with LST. The correlation of LST with NDSI was found better than NDBI. Further analysis was done by choosing 25 pure pixels from each land cover of water, vegetation, bare soil and urban areas to determine the behaviour of indices on LST for each land cover. The investigation shows that NDSI and NDBI can be effectively used for study of LST in urban areas. However, NDBI can explain urban LST in the better way for the regions without water body.</p>


2019 ◽  
Vol 12 (3) ◽  
pp. 1039
Author(s):  
Claudianne Brainer De Souza Oliveira

Atualmente o uso de índices físicos NDVI (Normalized Difference Vegetacion Index), NDBI (Normalized Difference Built-up Index) e NDWI (Normalized Difference Water Index) vêm sendo muito utilizados como suporte para o mapeamento e monitoramento de uso e ocupação da terra. A área de estudo abrange o Aeroporto Internacional do Recife/Guararapes – Gilberto Freyre e o seu entorno, uma região na qual estão inseridos os municípios de Jaboatão dos Guararapes e Recife, ambos no Estado de Pernambuco. Utilizando imagens do satélite LANDSAT-8, sensor OLI de 18-06-2016, orbita-ponto 214-066, aplicou-se a técnica de fusão RGB-IHS para se obter uma melhor resolução espacial, logo após foram calculados os índices físicos, com o objetivo de avaliar o uso e ocupação do solo da área em questão. Como resultado final, obteve-se um mapa de uso e cobertura da terra, contendo quatro classes (solo exposto, água, vegetação e área construída), na escala de 1:50.000, no sistema de referência geodésico WGS84.  Physical indexes from OLI - TIRS images as tools for land use and coverage mapping around the airport International Recife / Guararapes - Gilberto Freire A B S T R A C TCurrently the use of NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference Built-up Index) and NDWI (Normalized Difference Water Index) have been widely used as support for mapping and monitoring land use and occupation. The study area covers the Recife / Guararapes - Gilberto Freyre International Airport and its surroundings, a region in which the municipalities of Jaboatão dos Guararapes and Recife are located, both in the State of Pernambuco. Using images from the LANDSAT-8 satellite, OLI sensor of 06-06-2016, orbit-point 214-066, the RGB-IHS fusion technique was applied to obtain a better spatial resolution, after the physical indexes were calculated, with the objective of evaluating the land use and occupation of the area in question. As a final result, a land use and land cover map was obtained, containing four classes (exposed soil, water, vegetation and built area), in the 1: 50.000 scale, in the WGS84 geodetic reference system.Keywords: physical indexes, remote sensing, urban area, use and land cover.


Author(s):  
Siba Prasad Mishra ◽  
Ashish Patel ◽  
Abhisek Mishra ◽  
Chandan Kumar

The Nagavali river basin (NRB), along east coast of India investigated for its land use and land cover changes (LULCC) in the golden spike period of Anthropocene Epoch. Attempts made to assess the vicissitudes, causes, and consequences of natural resources, and soil/water resources of the NRB in last three decades as significant changes in hydro-climatic variables occurred. The interstate basin is well developed in lower reaches (north Andhra Pradesh) whereas upper stretches, South Odisha is less organized. GIS and remote sensing are efficient tools for an ideal study of LULCC of the area. Present work evaluates the dynamics of LULCC of NRB. LANDSAT-5, LANDSAT-8, of 1990, 2000, 2010 and 2020, respectively, were digitally classified for land use land cover mapping. The changing aspects of LULCC critically analyzed for three span, 1990–2000, 2000–2010 and 2010–2020. Through Normalized Difference Vegetation Index (NDVI) of the NRB examined carefully to assess the recent LULCC pattern. Major changes are sue to exchanges of areas are in between forest and built-up land followed by water body. The transformations are from forest to human habitation; especially built-up area that constitutes major percentage of the total landscape. The study shows that emphasis is necessary on more water consolidation projects in the upper Nagavali Basin considering the long-term LULC trend analysis.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2021 ◽  
Vol 6 (1) ◽  
pp. 59-65
Author(s):  
Safridatul Audah ◽  
Muharratul Mina Rizky ◽  
Lindawati

Tapaktuan is the capital and administrative center of South Aceh Regency, which is a sub-district level city area known as Naga City. Tapaktuan is designated as a sub-district to be used for the expansion of the capital's land. Consideration of land suitability is needed so that the development of settlements in Tapaktuan District is directed. The purpose of this study is to determine the level of land use change from 2014 to 2018 by using remote sensing technology in the form of Landsat-8 OLI satellite data through image classification methods by determining the training area of the image which then automatically categorizes all pixels in the image into land cover class. The results obtained are the results of the two image classification tests stating the accuracy of the interpretation of more than 80% and the results of the classification of land cover divided into seven forms of land use, namely plantations, forests, settlements, open land, and clouds. From these classes, the area of land cover change in Tapaktuan is increasing in size from year to year.


Author(s):  
Made Arya Bhaskara Putra ◽  
I Wayan Nuarsa ◽  
I Wayan Sandi Adnyana

Rice crop is one of the important commodities that must always be available, so estimation of rice production becomes very important to do before harvesting time to know the food availability. The technology that can be used is remote sensing technology using Landsat 8 Satellite. The aims of this study were (1) to obtain the model of estimation of rice production with Landsat 8 image analysis, and (2) to know the accuracy of the model that obtained by Landsat 8. The research area is located in three sub-districts in Klungkung regency. Analysis in this research was conducted by single band analysis and analysis of vegetation index of satellite image of Landsat 8. Estimation model of rice production was developed by finding the relationship between satellite image data and rice production data. The final stage is the accuracy test of the rice production estimation model, with t test and regression analysis. The results showed: (1) estimation of rice production can be calculated between 67 to 77 days after planting; (2) there was a positive correlation between NDVI (Normalized Difference Vegetation Index) vegetation index value with rice yield; (3) the model of rice production estimation is y = 2.0442e1.8787x (x is NDVI value of Landsat 8 and y is rice production); (4) The results of the model accuracy test showed that the obtained model is suitable to predict rice production with accuracy level is 89.29% and standard error of production estimation is + 0.443 ton/ha. Based on research results, it can be concluded that Landsat 8 Satellite image can be used to estimate rice production and the accuracy level is 89.29%. The results are expected to be a reference in estimating rice production in Klungkung Regency.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-19
Author(s):  
Tahmid Anam Chowdhury ◽  
◽  
Md. Saiful Islam ◽  

Urban developments in the cities of Bangladesh are causing the depletion of natural land covers over the past several decades. One of the significant implications of the developments is a change in Land Surface Temperature (LST). Through LST distribution in different Land Use Land Cover (LULC) and a statistical association among LST and biophysical indices, i.e., Urban Index (UI), Bare Soil Index (BI), Normalized Difference Builtup Index (NDBI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI), this paper studied the implications of LULC change on the LST in Mymensingh city. Landsat TM and OLI/TIRS satellite images were used to study LULC through the maximum likelihood classification method and LSTs for 1989, 2004, and 2019. The accuracy of LULC classifications was 84.50, 89.50, and 91.00 for three sampling years, respectively. From 1989 to 2019, the area and average LST of the built-up category has been increased by 24.99% and 7.6ºC, respectively. Compared to vegetation and water bodies, built-up and barren soil regions have a greater LST each year. A different machine learning method was applied to simulate LULC and LST in 2034. A remarkable change in both LULC and LST was found through this simulation. If the current changing rate of LULC continues, the built-up area will be 59.42% of the total area, and LST will be 30.05ºC on average in 2034. The LST in 2034 will be more than 29ºC and 31ºC in 59.64% and 23.55% areas of the city, respectively.


Author(s):  
Trinh Le Hung

The classification of urban land cover/land use is a difficult task due to the complexity in the structure of the urban surface. This paper presents the method of combining of Sentinel 2 MSI and Landsat 8 multi-resolution satellite image data for urban bare land classification based on NDBaI index. Two images of Sentinel 2 and Landsat 8 acquired closely together, were used to calculate the NDBaI index, in which sortware infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) of Landsat 8 image were used to improve the spatial resolution of NDBaI index. The results obtained from two experimental areas showed that, the total accuracy of classifying bare land from the NDBaI index which calculated by the proposed method increased by about 6% compared to the method using the NDBaI index, which is calculated using only Landsat 8 data. The results obtained in this study contribute to improving the efficiency of using free remote sensing data in urban land cover/land use classification.


Sign in / Sign up

Export Citation Format

Share Document