scholarly journals Influence Of Laser Cladding on Behavior of Fatigue and Fatigue Corrosion

2022 ◽  
Vol 961 (1) ◽  
pp. 012035
Author(s):  
Zaman A. Abdulwahab ◽  
Sami A. Ajeel ◽  
Sami I. Jafar

Abstract Nickle based super alloys such as Inconel 600 are being extensively used to manufacture turbine blades for jet engines since their superior mechanical characteristics at higher working temps. The chemical composition of steam turbine blades show that is steel 52 it has a wide range of Energy, Tanks, Rail, Yellow Goods, Engineering, Bridges, Construction, applications. Laser cladding seems to be a surfacing method that uses lasers to improve the characteristics of a component’s surface and/or renew it. Laser cladding involves absorption of laser light that melts a small area of the substrates against which the substance was being introduced and fuses the coating substance to the substrates, resulting in the formation of a new layer. This research aims to investigate the fatigue and fatigue corrosion behavior of these turbine blades before and after exposure to laser cladding. The cladding process applied with this parameter Pulse energy = 11 joules, Pulse width = 6 Ms., Pulse frequency = 12 Hz, Laser Average Power = 132 W, Laser peak power = 1.83 KW. The results show, after cladding process the microstructure of the specimen is smooth and increase the cyclic of fatigue comparison with specimen without laser cladding process. So, the fatigue resistance is increased.

2022 ◽  
Vol 961 (1) ◽  
pp. 012017
Author(s):  
Zaman A. Abdulwahab ◽  
Sami I. Jafar ◽  
Sami A. Ajeel

Abstract The steal turbine blades, operating in steam electricity production plants are subjected to periodic circular stresses that cause fatigue failure with the passage of time. The chemical composition so steam turbine blades show that is steel 52 it has a wide range of applications, mostly in welded construction, All kinds of welded construction, wind turbines, load-lifting equipment, platform components, cranes, bridge components, and structures. This research aims to study the microstructure of these turbine blades before and after the occurrence of fatigue, and for the purpose of improvement the fatigue resistance, the blades were treated with a laser and the amount of improvement in fatigue resistance was calculated and also the change in the microstructure after laser treatment was studied. The remelting process applied with this parameter Pulse energy = 8 joules, Pulse width = 4.5 Ms., Pulse frequency = 12 Hz, Laser Average Power = 96 W, Laser peak power = 1.78 KW. The results show, after remelting process the microstructure of the specimen is smooth and increase the cyclic of fatigue comparison with specimen without leaser remelting process. So, the fatigue resistance is increased.


Author(s):  
Huadong Zheng ◽  
Ming Cong ◽  
Dong Liu ◽  
Hang Dong ◽  
Yi Liu

Purpose The purpose of this paper is to provide an optimization method of robot cladding path, which is helpful to solve the problem of path under-optimization in laser cladding forming (LCF) based on robot. Design/methodology/approach First, the error influence parameters need setting before the cladding path generation, and the model of seeking appropriate error influence parameters is established based on the particle swarm optimization (PSO). Second, to solve the problem of collapse during the LCF process, the reason for collapse is analyzed and a robot cladding path error optimization method based on the layer path interpolation is proposed. Finally, the simulation and experiments are carried out. Findings Under the premise of giving the expected error of stereo lithography (STL) model, the optimal range of the chord height and the angle control can be quickly found by using PSO algorithm. Aiming at the collapse problem in the laser cladding process, a robot cladding path optimization method based on the layer path interpolation is proposed. A four-layer path interpolation simulation and the contrast experiments before and after the path optimization are completed; the results show that the robot cladding path optimization method can solve the problem of the collapse in laser cladding. Practical implications Robot cladding path optimization is one of the key technologies of LCF, and the quality of the robot cladding path is affected by STL model error and the path optimization method. This paper proposed a robot cladding path optimization method for LCF. This method can be used in other additive manufacturing techniques. Originality/value The quality of cladding path is important for LCF; this paper first proposed the optimization method of the robot cladding path for LCF to solve the collapse problem.


2021 ◽  
Vol 88 (4) ◽  
pp. 237-250
Author(s):  
Nils Melchert ◽  
Maximilian K.-B. Weiss ◽  
Tim Betker ◽  
Wojciech Frackowiak ◽  
Renè Gansel ◽  
...  

Abstract The maintenance and repair of jet or gas turbine components has a considerably high share in the overall turbine operating costs. The authors deal with the regeneration process of complex capital goods considering jet engines as an example, with turbine blades being the most important components to be regenerated. In order to decide on a reasonable and economical regeneration path, maintenance approaches typically require detailed knowledge of the shape and wear condition of the components. In order to select suitable repair strategies for each component, the best possible knowledge about geometry, damages and surface topologies is necessary. In order to meet these requirements, a novel combination of non-destructive testing and measuring methods will be presented. Each process can be adapted for inline operation. The presented methods also enable quality control of the regenerated components that have completed their individual regeneration path. Due to the high variety of possible defects on turbine blades, the individually presented methods can be combined to form an inspection sequence. Detailed status monitoring before and after maintenance becomes possible for each component. This provides the basis for further decisions in the regeneration process.


Author(s):  
Viviane Kettermann Fernandes ◽  
Alexander Lauffs ◽  
Adriano de Souza Pinto Pereira ◽  
Jhonattan Gutjahr ◽  
Milton Pereira ◽  
...  

2021 ◽  
pp. 074880682198989
Author(s):  
Alix Ferdinand ◽  
Suzan Obagi

The interest in cosmetic procedures for patients with skin of color is on an upward trend. Globally, dyschromia and hyperpigmentation remain the most common disorders for which patients seek treatment. The goals of a perioperative skin conditioning program include allowing a broad range of patients to be treated regardless of skin phototypes, maximizing results, and reducing risk of complications such as post-inflammatory hyperpigmentation and managing post-inflammatory hyperpigmentation if it occurs. The purpose of this article is to highlight common pigmentation concerns among patients with skin of color, the topical agents used to combat these concerns, and a practical approach to creating an effective yet straightforward topical skin care regimen that can be used across a wide range of patient skin phototypes. Before and after photos of patients with a variety of pigmentation concerns are presented along with a description of the treatment regimen used to improve their conditions and to get their skin to a safer state prior to performing any office-based procedures. By understanding the main concerns of patients with skin of color, one can use a simple and effective skincare regimen to allow these patients to be more safely treated. An effective skincare regimen both prepares the skin prior to procedures and postoperatively to help minimize dyschromias in the postoperative phase.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2225
Author(s):  
Aleksandra Kotarska ◽  
Tomasz Poloczek ◽  
Damian Janicki

The article presents research in the field of laser cladding of metal-matrix composite (MMC) coatings. Nickel-based superalloys show attractive properties including high tensile strength, fatigue resistance, high-temperature corrosion resistance and toughness, which makes them widely used in the industry. Due to the insufficient wear resistance of nickel-based superalloys, many scientists are investigating the possibility of producing nickel-based superalloys matrix composites. For this study, the powder mixtures of Inconel 625 superalloy with 10, 20 and 40 vol.% of TiC particles were used to produce MMC coatings by laser cladding. The titanium carbides were chosen as reinforcing material due to high thermal stability and hardness. The multi-run coatings were tested using penetrant testing, macroscopic and microscopic observations, microhardness measurements and solid particle erosive test according to ASTM G76-04 standard. The TiC particles partially dissolved in the structure during the laser cladding process, which resulted in titanium and carbon enrichment of the matrix and the occurrence of precipitates formation in the structure. The process parameters and coatings chemical composition variation had an influence on coatings average hardness and erosion rates.


2020 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Slmaro Park ◽  
Han-Sung Jung ◽  
Young-Soo Jung ◽  
Woong Nam ◽  
Jung Yul Cha ◽  
...  

Decompression followed by enucleation, which is one of the treatments used for odontogenic keratocysts (OKCs), is frequently used in OKC lesions of large sizes. This method offers the advantage of minimizing the possibility of sensory impairment without creating a wide-range bone defect; moreover, the recurrence rate can be significantly lower than following simple enucleation. This study aimed to assess the changes in histology and expression of proliferation markers in OKCs before and after decompression treatment. A total of 38 OKC tissue samples from 19 patients who had undergone decompression therapy were examined morphologically and immunohistochemically to observe changes in proliferative activity before and after decompression. The markers used for immunohistochemistry (IHC) staining were Bcl-2, epidermal growth factor receptor (EGFR), Ki-67, P53, PCNA, and SMO. The immunohistochemistry positivity of the 6 markers was scored by using software ImageJ, version 1.49, by quantifying the intensity and internal density of IHC-stained epithelium. The values of Bcl-2, Ki-67, P53, proliferating cell nuclear antigen (PCNA), and SMO in OKCs before and after decompression showed no significant change. No correlation between clinical shrinkage and morphologic changes or expression of proliferation and growth markers could be found. There was no statistical evidence that decompression treatment reduces potentially aggressive behavior of OKC within the epithelial cyst lining itself. This might indicate that decompression does not change the biological behavior of the epithelial cyst lining or the recurrence rate.


Sign in / Sign up

Export Citation Format

Share Document