scholarly journals Investigating Sea Surface Temperature and Coral Bleaching in the Coastal Area of Khanh Hoa Province

2022 ◽  
Vol 964 (1) ◽  
pp. 012004
Author(s):  
Tran Thi Van ◽  
Nguyen Trinh Duc Hieu ◽  
Nguyen Huu Huan ◽  
Nguyen Phuong Lien

Abstract Khanh Hoa Coastal area is considered the area with the most diverse coral reefs in the west of the East Sea. With the trend of increasing global temperature, the coral reefs here are affected, including the phenomenon of bleaching. This paper uses a Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) data source to evaluate the possible relationship between sea surface temperature and coral bleaching in the period 2010-2019 in Khanh Hoa coastal area is based on two parameters: Hot Spot (HS) and Degree Heating Months (DHM). Research results show that in the past 10 years, corals in Khanh Hoa coastal area may experience heat stress in 6 years, including 2010, 2013 and the years from 2016 to 2019. The phenomenon of heat stress starts to occur in May of each year, and the level of heat stress in 2010 was stronger than in other years. Within 6 years, there have been heat stress, coral bleaching events due to temperature only occurred in 2010; while in 2013, 2016, 2017, 2018 and 2019, corals suffered from heat stress in the watch level, meaning an increase in temperature is not yet capable of causing coral bleaching. The cause of coral bleaching in 2010 was the combined effect of the increase in sea surface temperature and the suppression of upwelling during the southwest monsoon.

OSEANA ◽  
2020 ◽  
Vol 45 (2) ◽  
pp. 13-22
Author(s):  
Qinthan Azzahra Aulia ◽  
Ni Wayan Purnama Sari

Coral reef ecosystem is one of the coastal marine ecosystems in tropical waters. Coral reef ecosystems are vulnerable to damage mainly due to environmental factors. A fairly popular event of coral reef damage is coral bleaching. Mass coral bleaching is generally caused by changes in Sea Surface Temperature (SST). The condition of corals that have bleaching is different from the condition of corals that have died. The recovery process from coral bleaching phenomena can be effectively carried out if the surrounding environment is supportive and sea surface temperature return stable. The phenomenon of coral bleaching is a real indicator of the environmental stresses that occur on coral reefs. This paper will explain about coral bleaching, the factors that cause coral bleaching, and whether the bleaching coral reefs mean alive or dead.


2021 ◽  
Vol 14 (9) ◽  
pp. 1-7
Author(s):  
N.D. Hung ◽  
L.T.H. Thuy ◽  
T.V. Hang ◽  
T.N. Luan

The coral reef ecosystem in Cu Lao Cham, Vietnam is part of the central zone of the Cu Lao Cham -Hoi An, a biosphere reserve and it is strictly protected. However, the impacts of natural disasters - tropical cyclones (TCs) go beyond human protection. The characteristic feature of TCs is strong winds and the consequences of strong winds are high waves. High waves caused by strong TCs (i.e. level 13 or more) cause decline in coral cover in the seas around Cu Lao Cham. Based on the relationship between sea surface temperature (SST) and the maximum potential intensity (MPI) of TCs, this research determines the number of strong TCs in Cu Lao Cham in the future. Using results from a regional climate change model, the risk is that the number of strong TCs in the period 2021-2060 under the RCP4.5 scenario, will be 3.7 times greater than in the period 1980-2019 and under the RCP 8.5 scenario it will be 5.2 times greater than in the period 1980-2019. We conclude that increases in SST in the context of climate change risks will increase the number and intensity of TCs and so the risk of their mechanical impact on coral reefs will be higher leading to degradation of this internationally important site.


2020 ◽  
Vol 8 (6) ◽  
pp. 453
Author(s):  
Andrea M. Gomez ◽  
Kyle C. McDonald ◽  
Karsten Shein ◽  
Stephanie DeVries ◽  
Roy A. Armstrong ◽  
...  

Coral reefs are among the most biologically diverse ecosystems on Earth. In the last few decades, a combination of stressors has produced significant declines in reef expanse, with declining reef health attributed largely to thermal stresses. We investigated the correspondence between time-series satellite remote sensing-based sea surface temperature (SST) datasets and ocean temperature monitored in situ at depth in coral reefs near La Parguera, Puerto Rico. In situ temperature data were collected for Cayo Enrique and Cayo Mario, San Cristobal, and Margarita Reef. The three satellite-based SST datasets evaluated were NOAA’s Coral Reef Watch (CoralTemp), the UK Meteorological Office’s Operational SST and Sea Ice Analysis (OSTIA), and NASA’s Jet Propulsion Laboratory (G1SST). All three satellite-based SST datasets assessed displayed a strong positive correlation (>0.91) with the in situ temperature measurements. However, all SST datasets underestimated the temperature, compared with the in situ measurements. A linear regression model using the SST datasets as the predictor for the in situ measurements produced an overall offset of ~1 °C for all three SST datasets. These results support the use of all three SST datasets, after offset correction, to represent the temperature regime at the depth of the corals in La Parguera, Puerto Rico.


2020 ◽  
Vol 20 (2) ◽  
pp. 129-141
Author(s):  
Tran Anh Tuan ◽  
Vu Hai Dang ◽  
Pham Viet Hong ◽  
Do Ngoc Thuc ◽  
Nguyen Thuy Linh ◽  
...  

In this article, the sea surface temperature trends and the influence of ENSO on the southwest sea of Vietnam were analyzed using the continuous satellite-acquired data sequence of SST in the period of 2002–2018. GIS and average statistical methods were applied to calculate the average monthly and seasonal sea surface temperature, the seasonal sea surface temperature anomalies for each year and for the whole study period. Subsequently, the changing trends of sea surface temperature in the northeast and southwest monsoon seasons were estimated using linear regression analysis. Research results indicated that the sea surface temperature changed significantly throughout the calendar year, in which the maximum and minimum sea surface temperature are 31oC in May and 26oC in January respectively. Sea surface temperature trends range from 0oC/year to 0.05oC/year during the Northeast monsoon season and from 0.025oC/year to 0.055oC/year during the southwest monsoon season. Results based on the Oceanic Niño Index (ONI) analysis also show that the sea surface temperature in the study area and adjacent areas is strongly influenced and significantly fluctuates during El Niño and La Niña episodes.


Author(s):  
Vinh Vu Duy ◽  
Sylvain Ouillon ◽  
Hai Nguyen Minh

Based on the Mann-Kendall test and Sen’s slope method, this study investigates the monthly, seasonal, and annual sea surface temperature (SST) trends in the coastal area of Hai Phong (West of Tonkin Gulf) based on the measurements at Hon Dau Station from 1995 to 2020. The results show a sea surface warming trend of 0.02°C/year for the period 1995-2020 (significant level α = 0.1) and of 0.093°C/year for the period 2008-2020 (significant level α = 0.05). The monthly SSTs in June and September increased by 0.027°C/year and 0.036°C/year, respectively, for the period 1995-2020, and by 0.080°C/year and 0.047°C/year, respectively, for the period 2008-2020. SST trends in winter, summer, and other months were either different for the two periods or not significant enough. This may be due to the impact of ENSO, which caused interannual SST variability in the Hai Phong coastal with two intrinsic mode functions (IMF) signals a period of ~2 (IMF3) and ~5.2 years cycle (IMF4). A combination of these signals had a maximum correlation of 0.22 with ONI (Oceanic Niño Index) delayed by 8 months. ENSO events took ~8 months to affect SST at Hai Phong coastal area for 1995-2020 and caused a variation of SST within 1.2°C.


Sign in / Sign up

Export Citation Format

Share Document