scholarly journals Displacements of a surface of FGM-coated half-space heated in a circular area taking into account imperfect coating-substrate interface

Author(s):  
S S Volkov
1972 ◽  
Vol 9 (4) ◽  
pp. 467-476 ◽  
Author(s):  
P. T. Brown ◽  
R. E. Gibson

An examination has been made of the behavior of a half space of elastic material of constant Poisson's ratio, whose Young's modulus increases linearly with depth, and which is subject to a strip or circle of uniform load. Poisson's ratio was considered in the range zero to one-half, and the surface modulus ranged from zero to the value corresponding to a homogeneous material.Numerical values are presented for vertical surface displacement due to a load uniformly distributed over a circular area for Poisson's ratio = 1/2, 1/3 and 0, and for a wide range of inhomogeneity.


1977 ◽  
Vol 44 (2) ◽  
pp. 227-230 ◽  
Author(s):  
G. N. Bycroft

A Fourier synthesis of the steady-state vibrations of a rigid plate on an elastic half space is used to determine the deceleration and penetration of a rigid body impacting an elastic half space over a flat circular area. In order to obtain a satisfactory solution, it is necessary to integrate to a large value of the frequency factor. The theoretical values are compared with some simple experiments on lead and Neoprene.


Author(s):  
R. A. Westmann

SynopsisThis paper formulates a general solution, within the scope of classical elastostatic theory, for the problem of layered systems subjected to asymmetric surface shears. As an illustrative example the solution for the problem of an elastic layer supported on an elastic half-space is presented for the particular loading consisting of a surface shearing force uniformly distributed over a circular area. Numerical results are included indicating some displacement and stress components of interest.


2003 ◽  
Vol 779 ◽  
Author(s):  
T. John Balk ◽  
Gerhard Dehm ◽  
Eduard Arzt

AbstractWhen confronted by severe geometric constraints, dislocations may respond in unforeseen ways. One example of such unexpected behavior is parallel glide in unpassivated, ultrathin (200 nm and thinner) metal films. This involves the glide of dislocations parallel to and very near the film/substrate interface, following their emission from grain boundaries. In situ transmission electron microscopy reveals that this mechanism dominates the thermomechanical behavior of ultrathin, unpassivated copper films. However, according to Schmid's law, the biaxial film stress that evolves during thermal cycling does not generate a resolved shear stress parallel to the film/substrate interface and therefore should not drive such motion. Instead, it is proposed that the observed dislocations are generated as a result of atomic diffusion into the grain boundaries. This provides experimental support for the constrained diffusional creep model of Gao et al.[1], in which they described the diffusional exchange of atoms between the unpassivated film surface and grain boundaries at high temperatures, a process that can locally relax the film stress near those boundaries. In the grains where it is observed, parallel glide can account for the plastic strain generated within a film during thermal cycling. One feature of this mechanism at the nanoscale is that, as grain size decreases, eventually a single dislocation suffices to mediate plasticity in an entire grain during thermal cycling. Parallel glide is a new example of the interactions between dislocations and the surface/interface, which are likely to increase in importance during the persistent miniaturization of thin film geometries.


2015 ◽  
Vol 37 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Pham Chi Vinh ◽  
Nguyen Thi Khanh Linh ◽  
Vu Thi Ngoc Anh

This paper presents  a technique by which the transfer matrix in explicit form of an orthotropic layer can be easily obtained. This transfer matrix is applicable for both the wave propagation problem and the reflection/transmission problem. The obtained transfer matrix is then employed to derive the explicit secular equation of Rayleigh waves propagating in an orthotropic half-space coated by an orthotropic layer of arbitrary thickness.


Sign in / Sign up

Export Citation Format

Share Document