scholarly journals The Use of Crumb Rubber-Based Composite Materials in the Road Pavement

2021 ◽  
Vol 1079 (2) ◽  
pp. 022020
Author(s):  
A V Korochkin
Author(s):  
Bayu Tirta Leksana Purnomo ◽  
Latif Budi Suparman ◽  
Agus Taufik Mulyono

<em>The development of infrastructure in Indonesia was increasing. The government focuses on boosting infrastructure development to create long-term economic growth. Therefore, a qualified infrastructure was a standard of an advanced rapidly economy. One of them is under construction was road and toll road infrastructure. As a result of the development was the occurrence of the increasing volume of vehicles on the road. Due to this resulting in an increased load reposition and also increased vehicle load on the road, it was then combined with a wet tropical climate or humid warm areas in Indonesia that have high rainfall and temperatures that can reach 38<sup>o</sup>C, resulting in structural damage such as cracks, rutting, stripping, and pothole. Performance from pavement also declined faster than the estimated plan. Roads in Indonesia mostly use the type of concrete asphalt mixture. Characteristics for concrete asphalt prioritize stability. In fact, the most important thing was the stability and durability of the road. Various ways can be done to overcome the road damage and acquire the ideal characteristics such as the use of added materials to Hot Mix Asphalt. To improve the performance of pavement characteristics, the use of added materials was expected to overcome problems that are affected by temperature, weather, increased vehicle volume, and increased traffic load. The added materials are to enhance Reacted and Activated Rubber (RAR) which was a developed crumb rubber to increase durability and keep the level of road pavement stability.</em>


2021 ◽  
Vol 1197 (1) ◽  
pp. 012017
Author(s):  
Rajat Mohan ◽  
Aakash Gupta ◽  
Kshitij Gaur

Abstract With continuous wear and tear actions of rubber tyre on roads, a pile of waste rubber gets accumulated every year and it is posing severe threats to the environment. Due to high temperature in the summers, the road tends to become brittle, which may cause separation of binder in the bituminous road causing heavy cracks, so usage of wax tends to reduce the formation of cracks and improve the flexibility of road. This study aims to examine the effects on properties of the bitumen-aggregate mixture when the aggregates are partially replaced by similar sizes of waste rubber tyre particles and bitumen in the mix are partially replaced by a crumb waste rubber tyre, with partial addition of wax content in the bituminous samples. For this purpose of testing the suitability of using rubber waste in road pavement, Marshall Stability test is conducted on several bituminous mixtures. Varying percentages of rubber tyre, such as 0%, 5%, 10% and 15%, are used with different percentages of bitumen content (4.0, 4.2, 4.4, and 4.6), and varying percentages of paraffin wax (0-5%) is also added in the specimen with rubber and bitumen. This is utilized in obtaining the optimum content of bitumen required for best suitability of flexible pavement as well as to assess the durability and strength of a pavement. This study is performed on various mixtures, for the values of bulk density, air voids, stability value and flow value. The studies show that bitumen content corresponding to the maximum stability value and maximum bulk specific gravity in bituminous mixture, indicating the optimum bitumen percentage that can be replaced with crumb rubber tyre. This paper discusses the partial replacement of both aggregate and bitumen in the bituminous mixture, containing some percentages of paraffin, which can help in improving the serviceability level and assists in enhancing the flexibility and cohesion of road to resist heavy loadings of vehicle.


2019 ◽  
Vol 13 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Cheng Yee Ng ◽  
Anaqi Ratna Narong ◽  
Aifaa Balqis Kamarul Zaman ◽  
Zahiraniza Mustaffa ◽  
Bashar S. Mohammed ◽  
...  

Background: High permeable concrete is designed with high porosity, which allows water to pass through it. By considering this ability, it has been widely used for various applications including high permeable road pavement. However, to fully adopt highly permeable road pavement technology is challenging due to high cost and maintenance, besides the present engineers and contractors have insufficient expertise and experience with this technology. Henceforth, the high porosity property is highly favorable for road curb applications especially in the tropical region like Malaysia with high rainfall intensity. Objective: This paper aimed to determine the properties of the concrete experimentally, and propose the optimum mix design of high permeable concrete for road curb. Methods: The flow value and setting time of the cement paste were investigated. Next, the effects of the modified high permeable concrete with varying amount of crumb rubber on compressive strength, permeability and void ratio were also investigated. Results and Conclusion: Results have revealed that the workability of the cement paste increases when the water-binder ratio and the amount of fly ash increase. Meanwhile, an increasing amount of cement ratio and crumb rubber lowers the flow value and consequently leads to lower void ratio and permeability. Besides, it has been found that the higher the compressive strength, the lower the void ratio and permeability of the concrete. The research findings support that using an optimum amount of cement replacement with crumb rubber as an additive may increase the performance a high permeable concrete. Herein, the results indicate that the mix design of the concrete studied has the potential to be applied onto the road curb.


Technobius ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 0007
Author(s):  
Aigerim Syzdykova ◽  
Aigul Zhakyp ◽  
Assel Tulebekova

The road industry is one of the important components of the economy. Quantitative and qualitative changes in the road industry require new technological approaches to road construction. The higher the transport-operational level of roads, the less the negative consequences of motorization are manifested. The condition of highways and their compliance with the international standards largely depends on the observance of construction technologies of road pavement, and the road pavement itself should have layers of strong, frost and temperature resistant monolithic materials which provide a long period of exploitation. The paper presents the peculiarities of the application of different types of modifiers for bitumen. It discusses their advantages and disadvantages, the importance of selecting the composition of the bituminous and mineral mixture. The use of crumb rubber as a modifier allows to realize the concept of a closed resource-saving technology of construction of roads. This approach will allow, on a technologically sound basis and taking into account the real needs of road construction materials, to restore the road network.


2018 ◽  
pp. 128-145
Author(s):  
Volodynyr Mozghovyi ◽  
◽  
Viktor Gaidaichuk ◽  
Yurii Zaiets ◽  
Liudmyla Shevchuk ◽  
...  

2019 ◽  
Vol 13 (3) ◽  
pp. 235-240
Author(s):  
Iryna Solonenko

The development of road network infrastructure is an important component of the economic development of the European Union. Updating of the road network contributes to the integration of the economies of countries into a coherent whole. The road network provides the free movement of citizens, the movement of goods and the effective implementation of various services. The increase in the length of the road network leads to an increase in the financial and material costs necessary to ensure its maintenance and repair. One of the ways to reduce costs is by strengthening the physic-mechanical and operational characteristics of the pavement due to the widespread use of cement concrete. The quality of the pavement of cement concrete depends largely on the rational selection of its composition. This allows a significant increase in the durability of road pavement. The purpose of the research was: the development of recommendations for the rational selection of the composition of the road pavement material of cement concrete, aimed at upgrading longevity, and taking into account its frost resistance grade. According to the goal, the following tasks were developed: the analyses of the climatic zones in which the road network of the European Union is located; the development of a research plan, a selection of the response function and influence factors; the study of physico-mechanical and operational characteristics of the researched material of road pavement; on the basis of the obtained data, the calculation of the complex of experimental-statistical models, which describe the physico-mechanical and operational characteristics of the road pavement material; on the basis of experimental statistical models, a method was proposed for selecting the rational compositions of the cement concrete pavement road material depending on the conditions of its application. The results presented in the article can be used in engineering and scientific practice for the selection of road pavement from cement concrete for highways.


2021 ◽  
Vol 13 (15) ◽  
pp. 8172
Author(s):  
Kechen Wang ◽  
Xiangyu Chu ◽  
Jiao Lin ◽  
Qilin Yang ◽  
Zepeng Fan ◽  
...  

Tire—pavement interaction behaviours result in large amounts of wearing waste matter, which attaches to the surface of the pavement and is directly exposed to the surrounding environment. This kind of matter imposes a great challenge to the environment of the road area. The current study is devoted to carrying out a comprehensive investigation of the formation mechanism of tire—pavement wearing waste (TPWW), as well as the resulting environmental risks. A self-developed piece of accelerated polishing equipment, the Harbin advanced polishing machine (HAPM), was employed to simulate the wearing process between vehicle tires and pavement surfaces, and the TPWW was collected to conduct morphological, physical, and chemical characterisations. The results from this study show that the production rate of TPWW decreases with the increase in polishing duration, and the coarse particles (diameters greater than 0.425 mm) account for most of the TPWW obtained. The fine fraction (diameter smaller than 0.425 mm) of the TPWW comprises variously sized and irregularly shaped rubber particles from the tire, as well as uniformly sized and angular fine aggregates. The environmental analysis results show that volatile alkanes (C9–C16) are the major organic contaminants in TPWW. The Open-Graded Friction Course (OGFC) asphalt mixture containing crumb rubber as a modifier showed the highest risk of heavy metal pollution, and special concern must be given to tire materials for the purpose of improving the environmental conditions of road areas. The use of polyurethane as a binder material in the production of pavement mixtures has an environmental benefit in terms of pollution from both organic contaminants and heavy metals.


2021 ◽  
Vol 13 (11) ◽  
pp. 5899
Author(s):  
Yeonsoo Jun ◽  
Juneyoung Park ◽  
Chunho Yeom

This paper evaluates experimental variables for virtual road safety audits (VRSAs) through practical experiments to promote sustainable road safety. VRSAs perform road safety audits using driving simulators (DSs), and all objects in the road environment cannot be experimental variables because of realistic constraints. Therefore, the study evaluates the likelihood of recommendation of VRSA experimental variables by comparing DSs experiments and field reviews to secure sustainable road safety conditions. The net promoter score results evaluated “Tunnel”, “Bridge”, “Underpass”, “Footbridge”, “Traffic island”, “Sign”, “Lane”, “Road marking”, “Traffic light”, “Median barrier”, “Road furniture”, and “Traffic condition” as recommended variables. On the contrary, the “Road pavement”, “Drainage”, “Lighting”, “Vehicle”, “Pedestrian”, “Bicycle”, “Accident”, and “Hazard event” variables were not recommended. The study can be used for decision making in VRSA scenario development as an initial effort to evaluate its experimental variables.


2021 ◽  
Vol 1125 (1) ◽  
pp. 012019
Author(s):  
Yosef Cahyo Setianto Poernomo ◽  
Sigit Winarto ◽  
Zendy Bima Mahardana ◽  
Dwifi Aprillia Karisma ◽  
Rekso Ajiono

2011 ◽  
Vol 194-196 ◽  
pp. 1632-1638
Author(s):  
Hong Liang Deng ◽  
Xiao Yin Fu ◽  
Wen Xue Gao ◽  
Ting Ting Ni ◽  
Kai Jiang Chen

The methods of controlling Highway semi-rigid base asphalt pavement cracks and other diseases are always hot fields of road engineering and academic circles. The existing methods are on some degree efficient on delaying the formation and extension of cracks, but the effect is limited with different methods and various mechanisms of preventing cracks. Base on force analysis of pavement, this article presents a new technology of crack controlling which uses intelligent composite materials interlayer. By adding a stress absorbing layer between the asphalt surface layers or the semi-rigid base layers with low modulus, good toughness, self-adaptability and self-control ability, the intelligent composite materials interlayer has a good effect on controlling cracks which has been proved by the theoretical calculations and experimental analysis. As a result, the intelligent composite materials interlayer could efficiently prevent and delay the formation and extension of cracks, the safety and comfort of highway could be improved significantly while the cost of construction and maintenance decreasing. And the service level and social image of the road could also be improved effectively. This research has important academic and application value.


Sign in / Sign up

Export Citation Format

Share Document