scholarly journals The role of intergranular chromium carbides on intergranular oxidation of nickel based alloys in pressurized water reactors primary water

Author(s):  
F O M Gaslain ◽  
H T Le ◽  
C Duhamel ◽  
C Guerre ◽  
P Laghoutaris
Author(s):  
Stephen Marlette ◽  
Stan Bovid

Abstract For several decades pressurized water reactors have experienced Primary Water Stress Corrosion Cracking (PWSCC) within Alloy 600 components and welds. The nuclear industry has developed several methods for mitigation of PWSCC to prevent costly repairs to pressurized water reactor (PWR) components including surface stress improvement by peening. Laser shock peening (LSP) is one method to effectively place the surface of a PWSCC susceptible component into compression and significantly reduce the potential for crack initiation during future operation. The Material Reliability Program (MRP) has issued MRP-335, which provides guidelines for effective mitigation of reactor vessel heads and nozzles constructed of Alloy 600 material. In addition, ASME Code Case N-729-6 provides performance requirements for peening processes applied to reactor vessel head penetrations in order to prevent degradation and take advantage of inspection relief, which will reduce operating costs for nuclear plants. LSP Technologies, Inc. (LSPT) has developed and utilized a proprietary LSP system called the Procudo® 200 Laser Peening System. System specifications are laser energy of 10 J, pulse width of 20 ns, and repetition rate of 20 Hz. Scalable processing intensity is provided through automated focusing optics control. For the presented work, power densities of 4 to 9.5 GW/cm2 and spot sizes of nominally 2 mm were selected. This system has been used effectively in many non-nuclear industries including aerospace, power generation, automotive, and oil and gas. The Procudo® 200 Laser Peening System will be used to process reactor vessel heads in the United States for mitigation of PWSCC. The Procudo® 200 Laser Peening System is a versatile and portable system that can be deployed in many variations. This paper presents test results used to evaluate the effectiveness of the Procudo® 200 Laser Peening System on Alloy 600 material and welds. As a part of the qualification process, testing was performed to demonstrate compliance with industry requirements. The test results include surface stress measurements on laser peened Alloy 600, and Alloy 182 coupons using x-ray diffraction (XRD) and crack compliance (slitting) stress measurement techniques. The test results are compared to stress criteria developed based on the performance requirements documented in MRP-335 and Code Case N-729-6. Other test results include surface roughness measurements and percent of cold work induced by the peening process. The test results demonstrate the ability of the LSP process to induce the level and depth of compression required for mitigation of PWSCC and that the process does not result in adverse conditions within the material.


Kerntechnik ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. 54-67
Author(s):  
A. Hamedani ◽  
O. Noori-Kalkhoran ◽  
R. Ahangari ◽  
M. Gei

Abstract Steam generators are one of the most important components of pressurized-water reactors. This component plays the role of heat transfer and pressure boundary between primary and secondary side fluids. The Once Through Steam Generator (OTSG) is an essential component of the integrated nuclear power system. In this paper, steady-state analysis of primary and secondary fluids in the Integral Economizer Once Through Steam Generator (IEOTSG) have been presented by Single Heated Channel (SHC) and subchannel modelling. Models have been programmed by MATLAB and FORTRAN. First, SHC model has been used for this purpose (changes are considered only in the axial direction in this model). Second, the subchannel approach that considers changes in the axial and also radial directions has been applied. Results have been compared with Babcock and Wilcox (B&W) 19- tube once through steam generator experimental data. Thermal- hydraulic profiles have been presented for steam generator using both of models. Accuracy and simplicity of SHC model and importance of localization of thermal-hydraulic profiles in subchannel approach have been proved.


2003 ◽  
Vol 40 (7) ◽  
pp. 509-516 ◽  
Author(s):  
Takumi TERACHI ◽  
Nobuo TOTSUKA ◽  
Takuyo YAMADA ◽  
Tomokazu NAKAGAWA ◽  
Hiroshi DEGUCHI ◽  
...  

2013 ◽  
Vol 1519 ◽  
Author(s):  
Sergio Lozano-Perez ◽  
Helen Dugdale ◽  
David E J Armstrong ◽  
Takumi Terachi ◽  
Takuyo Yamada ◽  
...  

ABSTRACTThe fracture behaviour of individual grain boundaries has been studied in order to understand the mechanisms controlling stress corrosion cracking in nuclear reactors. In particular, the role of oxidation in facilitating crack initiation and propagation has been reviewed. Nickel alloys from pressurized water reactors (PWRs) have been tested in simulated primary water conditions to induce grain boundary oxidation. Microcantilevers containing an oxidized grain boundary plane have been prepared and tested for fracture. The brittle nature of the oxide was demonstrated and the required stress to fracture measured.


Sign in / Sign up

Export Citation Format

Share Document