scholarly journals Numerical Simulation of Temperature Distribution in Robotic Arc welding by ARISTOTM Robot

2021 ◽  
Vol 1116 (1) ◽  
pp. 012117
Author(s):  
Aman Sharma ◽  
Pradeep Kumar Singh ◽  
Rohit Sharma
Author(s):  
Junnosuke Okajima ◽  
Atsuki Komiya ◽  
Shigenao Maruyama

The objective of this work is to experimentally and numerically evaluate small-scale cryosurgery using an ultrafine cryoprobe. The outer diameter (OD) of the cryoprobe was 550 μm. The cooling performance of the cryoprobe was tested with a freezing experiment using hydrogel at 37 °C. As a result of 1 min of cooling, the surface temperature of the cryoprobe reached −35 °C and the radius of the frozen region was 2 mm. To evaluate the temperature distribution, a numerical simulation was conducted. The temperature distribution in the frozen region and the heat transfer coefficient was discussed.


2012 ◽  
Vol 622-623 ◽  
pp. 315-318
Author(s):  
Aparesh Datta ◽  
Subodh Debbarma ◽  
Subhash Chandra Saha

The quality of joining has assumed a greater role in fabrication of metal in recent years, because of the development of new alloys with tremendously increased strength and toughness. Submerged arc welding is a high heat input fusion welding process in which weld is produced by moving localized heat source along the joint. The weld quality in turn affected by thermal cycle that the weldment experiences during the welding. In the present study a simple comprehensive mathematical model has been developed using a moving heat source and analyzing the temperature on one section and then the temperature distribution of other section are correlated with time delay with reference analyzed section.


2014 ◽  
Vol 6 (2) ◽  
pp. 77-85
Author(s):  
Pratibha Joshi ◽  
Manoj Kumar

Many studies have been done previously on temperature distribution in inhomogeneous composite systems with perfect interface, having no discontinuities along it. In this paper we have determined steady state temperature distribution in two inhomogeneous composite systems with imperfect interface, having discontinuities in temperature and heat flux using decomposed immersed interface method and performed the numerical simulation on MATLAB.


2007 ◽  
Vol 40 (5) ◽  
pp. 146-150 ◽  
Author(s):  
Zhiguo Yan ◽  
De Xu ◽  
Yuan Li ◽  
Min Tan ◽  
Zengshun Zhao

Sign in / Sign up

Export Citation Format

Share Document