scholarly journals Decision Tree C 4.5 Algorithm for Classification of Poor Family Scholarship Recipients

2021 ◽  
Vol 1125 (1) ◽  
pp. 012048
Author(s):  
Y Kustiyahningsih ◽  
B K Khotimah ◽  
D R Anamisa ◽  
M Yusuf ◽  
T Rahayu ◽  
...  
2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 126-127
Author(s):  
Lucas S Lopes ◽  
Christine F Baes ◽  
Dan Tulpan ◽  
Luis Artur Loyola Chardulo ◽  
Otavio Machado Neto ◽  
...  

Abstract The aim of this project is to compare some of the state-of-the-art machine learning algorithms on the classification of steers finished in feedlots based on performance, carcass and meat quality traits. The precise classification of animals allows for fast, real-time decision making in animal food industry, such as culling or retention of herd animals. Beef production presents high variability in its numerous carcass and beef quality traits. Machine learning algorithms and software provide an opportunity to evaluate the interactions between traits to better classify animals. Four different treatment levels of wet distiller’s grain were applied to 97 Angus-Nellore animals and used as features for the classification problem. The C4.5 decision tree, Naïve Bayes (NB), Random Forest (RF) and Multilayer Perceptron (MLP) Artificial Neural Network algorithms were used to predict and classify the animals based on recorded traits measurements, which include initial and final weights, sheer force and meat color. The top performing classifier was the C4.5 decision tree algorithm with a classification accuracy of 96.90%, while the RF, the MLP and NB classifiers had accuracies of 55.67%, 39.17% and 29.89% respectively. We observed that the final decision tree model constructed with C4.5 selected only the dry matter intake (DMI) feature as a differentiator. When DMI was removed, no other feature or combination of features was sufficiently strong to provide good prediction accuracies for any of the classifiers. We plan to investigate in a follow-up study on a significantly larger sample size, the reasons behind DMI being a more relevant parameter than the other measurements.


2021 ◽  
Vol 1869 (1) ◽  
pp. 012082
Author(s):  
B A C Permana ◽  
R Ahmad ◽  
H Bahtiar ◽  
A Sudianto ◽  
I Gunawan

2021 ◽  
pp. 1-10
Author(s):  
Chao Dong ◽  
Yan Guo

The wide application of artificial intelligence technology in various fields has accelerated the pace of people exploring the hidden information behind large amounts of data. People hope to use data mining methods to conduct effective research on higher education management, and decision tree classification algorithm as a data analysis method in data mining technology, high-precision classification accuracy, intuitive decision results, and high generalization ability make it become a more ideal method of higher education management. Aiming at the sensitivity of data processing and decision tree classification to noisy data, this paper proposes corresponding improvements, and proposes a variable precision rough set attribute selection standard based on scale function, which considers both the weighted approximation accuracy and attribute value of the attribute. The number improves the anti-interference ability of noise data, reduces the bias in attribute selection, and improves the classification accuracy. At the same time, the suppression factor threshold, support and confidence are introduced in the tree pre-pruning process, which simplifies the tree structure. The comparative experiments on standard data sets show that the improved algorithm proposed in this paper is better than other decision tree algorithms and can effectively realize the differentiated classification of higher education management.


Spine ◽  
2010 ◽  
Vol 35 (10) ◽  
pp. 1054-1059 ◽  
Author(s):  
Philippe Phan ◽  
Neila Mezghani ◽  
Marie-Lyne Nault ◽  
Carl-Éric Aubin ◽  
Stefan Parent ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Faizan Ullah ◽  
Qaisar Javaid ◽  
Abdu Salam ◽  
Masood Ahmad ◽  
Nadeem Sarwar ◽  
...  

Ransomware (RW) is a distinctive variety of malware that encrypts the files or locks the user’s system by keeping and taking their files hostage, which leads to huge financial losses to users. In this article, we propose a new model that extracts the novel features from the RW dataset and performs classification of the RW and benign files. The proposed model can detect a large number of RW from various families at runtime and scan the network, registry activities, and file system throughout the execution. API-call series was reutilized to represent the behavior-based features of RW. The technique extracts fourteen-feature vector at runtime and analyzes it by applying online machine learning algorithms to predict the RW. To validate the effectiveness and scalability, we test 78550 recent malign and benign RW and compare with the random forest and AdaBoost, and the testing accuracy is extended at 99.56%.


Author(s):  
Heni Sulistiani ◽  
Ahmad Ari Aldino

In pandemic era, almost everyone struggles for their life. College students are such example. They have difficulty in paying tuition fee to continue their study. Based on this problematic situation, Universitas Teknokrat Indonesia grants the students who have good academic performance with tuition fee aid program. Many variables used for determining the grant made it hard to make a decision in a short time or even takes very long time. To make it easier for management to decide who is the right student to get grant, it needs classification model. The purpose of this study is the classification of grant recipients by using decision tree C4.5 algorithm. That can determine whether a potential student can be accepted as an awardee or not. Then, the results of the classification are validated with ten-fold cross validation with an accuracy, precision and recall with the score of 87 % for all part. It means the model perform quite well to be implemented into system.


Lubricant condition monitoring (LCM), part of condition monitoring techniques under Condition Based Maintenance, monitors the condition and state of the lubricant which reveal the condition and state of the equipment. LCM has proved and evidenced to represent a key concept driving maintenance decision making involving sizeable number of parameter (variables) tests requiring classification and interpretation based on the lubricant’s condition. Reduction of the variables to a manageable and admissible level and utilization for prediction is key to ensuring optimization of equipment performance and lubricant condition. This study advances a methodology on feature selection and predictive modelling of in-service oil analysis data to assist in maintenance decision making of critical equipment. Proposed methodology includes data pre-processing involving cleaning, expert assessment and standardization due to the different measurement scales. Limits provided by the Original Equipment Manufacturers (OEM) are used by the analysts to manually classify and indicate samples with significant lubricant deterioration. In the last part of the methodology, Random Forest (RF) is used as a feature selection tool and a Decision Tree-based (DT) classification of the in-service oil samples. A case study of a thermal power plant is advanced, to which the framework is applied. The selection of admissible variables using Random Forest exposes critical used oil analysis (UOA) variables indicative of lubricant/machine degradation, while DT model, besides predicting the classification of samples, offers visual interpretability of parametric impact to the classification outcome. The model evaluation returned acceptable predictive, while the framework renders speedy classification with insights for maintenance decision making, thus ensuring timely interventions. Moreover, the framework highlights critical and relevant oil analysis parameters that are indicative of lubricant degradation; hence, by addressing such critical parameters, organizations can better enhance the reliability of their critical operable equipment.


Sign in / Sign up

Export Citation Format

Share Document