scholarly journals A DECISION TREE-BASED CLASSIFICATION FRAMEWORK FOR USED OIL ANALYSIS APPLYING RANDOM FOREST FEATURE SELECTION

Lubricant condition monitoring (LCM), part of condition monitoring techniques under Condition Based Maintenance, monitors the condition and state of the lubricant which reveal the condition and state of the equipment. LCM has proved and evidenced to represent a key concept driving maintenance decision making involving sizeable number of parameter (variables) tests requiring classification and interpretation based on the lubricant’s condition. Reduction of the variables to a manageable and admissible level and utilization for prediction is key to ensuring optimization of equipment performance and lubricant condition. This study advances a methodology on feature selection and predictive modelling of in-service oil analysis data to assist in maintenance decision making of critical equipment. Proposed methodology includes data pre-processing involving cleaning, expert assessment and standardization due to the different measurement scales. Limits provided by the Original Equipment Manufacturers (OEM) are used by the analysts to manually classify and indicate samples with significant lubricant deterioration. In the last part of the methodology, Random Forest (RF) is used as a feature selection tool and a Decision Tree-based (DT) classification of the in-service oil samples. A case study of a thermal power plant is advanced, to which the framework is applied. The selection of admissible variables using Random Forest exposes critical used oil analysis (UOA) variables indicative of lubricant/machine degradation, while DT model, besides predicting the classification of samples, offers visual interpretability of parametric impact to the classification outcome. The model evaluation returned acceptable predictive, while the framework renders speedy classification with insights for maintenance decision making, thus ensuring timely interventions. Moreover, the framework highlights critical and relevant oil analysis parameters that are indicative of lubricant degradation; hence, by addressing such critical parameters, organizations can better enhance the reliability of their critical operable equipment.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Faizan Ullah ◽  
Qaisar Javaid ◽  
Abdu Salam ◽  
Masood Ahmad ◽  
Nadeem Sarwar ◽  
...  

Ransomware (RW) is a distinctive variety of malware that encrypts the files or locks the user’s system by keeping and taking their files hostage, which leads to huge financial losses to users. In this article, we propose a new model that extracts the novel features from the RW dataset and performs classification of the RW and benign files. The proposed model can detect a large number of RW from various families at runtime and scan the network, registry activities, and file system throughout the execution. API-call series was reutilized to represent the behavior-based features of RW. The technique extracts fourteen-feature vector at runtime and analyzes it by applying online machine learning algorithms to predict the RW. To validate the effectiveness and scalability, we test 78550 recent malign and benign RW and compare with the random forest and AdaBoost, and the testing accuracy is extended at 99.56%.


Author(s):  
Tyler Swanger ◽  
Kaitlyn Whitlock ◽  
Anthony Scime ◽  
Brendan P. Post

This chapter data mines the usage patterns of the ANGEL Learning Management System (LMS) at a comprehensive college. The data includes counts of all the features ANGEL offers its users for the Fall and Spring semesters of the academic years beginning in 2007 and 2008. Data mining techniques are applied to evaluate which LMS features are used most commonly and most effectively by instructors and students. Classification produces a decision tree which predicts the courses that will use the ANGEL system based on course specific attributes. The dataset undergoes association mining to discover the usage of one feature’s effect on the usage of another set of features. Finally, clustering the data identifies messages and files as the features most commonly used. These results can be used by this institution, as well as similar institutions, for decision making concerning feature selection and overall usefulness of LMS design, selection and implementation.


Sensor Review ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Deepika Kishor Nagthane ◽  
Archana M. Rajurkar

PurposeOne of the main reasons for increase in mortality rate in woman is breast cancer. Accurate early detection of breast cancer seems to be the only solution for diagnosis. In the field of breast cancer research, many new computer-aided diagnosis systems have been developed to reduce the diagnostic test false positives because of the subtle appearance of breast cancer tissues. The purpose of this study is to develop the diagnosis technique for breast cancer using LCFS and TreeHiCARe classifier model.Design/methodology/approachThe proposed diagnosis methodology initiates with the pre-processing procedure. Subsequently, feature extraction is performed. In feature extraction, the image features which preserve the characteristics of the breast tissues are extracted. Consequently, feature selection is performed by the proposed least-mean-square (LMS)-Cuckoo search feature selection (LCFS) algorithm. The feature selection from the vast range of the features extracted from the images is performed with the help of the optimal cut point provided by the LCS algorithm. Then, the image transaction database table is developed using the keywords of the training images and feature vectors. The transaction resembles the itemset and the association rules are generated from the transaction representation based ona priorialgorithm with high conviction ratio and lift. After association rule generation, the proposed TreeHiCARe classifier model emanates in the diagnosis methodology. In TreeHICARe classifier, a new feature index is developed for the selection of a central feature for the decision tree centered on which the classification of images into normal or abnormal is performed.FindingsThe performance of the proposed method is validated over existing works using accuracy, sensitivity and specificity measures. The experimentation of proposed method on Mammographic Image Analysis Society database resulted in classification of normal and abnormal cancerous mammogram images with an accuracy of 0.8289, sensitivity of 0.9333 and specificity of 0.7273.Originality/valueThis paper proposes a new approach for the breast cancer diagnosis system by using mammogram images. The proposed method uses two new algorithms: LCFS and TreeHiCARe. LCFS is used to select optimal feature split points, and TreeHiCARe is the decision tree classifier model based on association rule agreements.


Author(s):  
Shweta Dabetwar ◽  
Stephen Ekwaro-Osire ◽  
João Paulo Dias

Abstract Composite materials have tremendous and ever-increasing applications in complex engineering systems; thus, it is important to develop non-destructive and efficient condition monitoring methods to improve damage prediction, thereby avoiding catastrophic failures and reducing standby time. Nondestructive condition monitoring techniques when combined with machine learning applications can contribute towards the stated improvements. Thus, the research question taken into consideration for this paper is “Can machine learning techniques provide efficient damage classification of composite materials to improve condition monitoring using features extracted from acousto-ultrasonic measurements?” In order to answer this question, acoustic-ultrasonic signals in Carbon Fiber Reinforced Polymer (CFRP) composites for distinct damage levels were taken from NASA Ames prognostics data repository. Statistical condition indicators of the signals were used as features to train and test four traditional machine learning algorithms such as K-nearest neighbors, support vector machine, Decision Tree and Random Forest, and their performance was compared and discussed. Results showed higher accuracy for Random Forest with a strong dependency on the feature extraction/selection techniques employed. By combining data analysis from acoustic-ultrasonic measurements in composite materials with machine learning tools, this work contributes to the development of intelligent damage classification algorithms that can be applied to advanced online diagnostics and health management strategies of composite materials, operating under more complex working conditions.


Author(s):  
Fabian Torres ◽  
Boris Escalante-Ramirez ◽  
Jorge Perez-Gonzales ◽  
Roman Anselmo Mora-Gutierrrez ◽  
Antonin Ponsich ◽  
...  

2009 ◽  
Vol 10 (1) ◽  
pp. 213 ◽  
Author(s):  
Bjoern H Menze ◽  
B Michael Kelm ◽  
Ralf Masuch ◽  
Uwe Himmelreich ◽  
Peter Bachert ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
pp. 14
Author(s):  
Husna Afanyn Khoirunissa ◽  
Amanda Rizky Widyaningrum ◽  
Annisa Priliya Ayu Maharani

<p>The Bank is a business entity that is dealing with money, accepting deposits from customers, providing funds for each withdrawal, billing checks on the customer's orders, giving credit and or embedding the excess deposits until required for repayment. The purpose of this research is to determine the influence of age, gender, country, customer credit score, number of bank products used by the customer, and the activation of the bank members in the decision to choose to continue using the bank account that he has retained or closed the bank account. The data in this research used 10,000 respondents originating from France, Spain, and Germany. The method used is data mining with early stage preprocessing to clean data from outlier and missing value and feature selection to select important attributes. Then perform the classification using three methods, which are Random Forest, Logistic Regression, and Multilayer Perceptron. The results of this research showed that the model with Multilayer Perceptron method with 10 folds Cross Validation is the best model with 85.5373% accuracy.</p><strong>Keywords:</strong> bank customer, random forest, logistic regression, multilayer perceptron


Author(s):  
S. Ryskulbek ◽  
O. Mamyrbayev ◽  
A. Turganbayeva

Temperament is a set of innate tendencies of the mind associated with the processes of perception, analysis and decision-making. The purpose of this article is to predict the psychotype of individuals based on chat stories and follow the Keirsi model, according to which the psycho type is classified as a craftsman, guardian, idealist and mind. The proposed methodology uses a version of LIWC, a dictionary of words, to analyze the context of words and uses supervised learning using KNN, SVM, and Random Forest algorithms to train the classifier. The average accuracy obtained was 88.37% for artisan temperament, 86.92% for caregivers, 55.61% for idealists, and 69.09% for rationality. When using the binary classifier, the average accuracy was 90.93% for artisan temperament, 88.98% for caregivers, 51.98% for idealism, and 71.42% for rationality.


Diabetes has become a serious problem now a day. So there is a need to take serious precautions to eradicate this. To eradicate, we should know the level of occurrence. In this project we predict the level of occurrence of diabetes. We predict the level of occurrence of diabetes using Random Forest, a Machine Learning Algorithm. Using the patient’s Electronic Health Records (EHR) we can build accurate models that predict the presence of diabetes.


Sign in / Sign up

Export Citation Format

Share Document