scholarly journals Investigating the luminescent property of transition metal doped ZnS nanoparticles synthesised by co-precipitation method

2021 ◽  
Vol 1126 (1) ◽  
pp. 012058
Author(s):  
N V Desai ◽  
I A Shaikh ◽  
Adhish V Raval ◽  
K G Raval ◽  
D V Shah
Optik ◽  
2020 ◽  
Vol 206 ◽  
pp. 164357 ◽  
Author(s):  
Kanupriya Sharma ◽  
Praveen Kumar ◽  
Gaurav Verma ◽  
Ashok Kumar

2015 ◽  
Vol 827 ◽  
pp. 43-48
Author(s):  
Annisa Noorhidayati ◽  
Mia Putri Rahmawati ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

Transition metal ions (Co and Cr) doped ZnO nanoparticles supported on natural zeolite were synthesized using co-precipitation method. The synthesized samples were characterized by means of X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and UV-visible diffuse reflectance spectroscopy. The samples were further used as photocatalyst for degradation of methyl orange and methylene blue in aqueous solutions under UV light irradiation. The results showed that zeolite supported Cr-doped ZnO nanoparticles is more efficient compared with zeolite supported Co-doped ZnO nanoparticles. It is also revealed that zeolite supported samples possessed higher photocatalytic efficiency compared to bare samples.


2013 ◽  
Vol 678 ◽  
pp. 163-167 ◽  
Author(s):  
D. Amaranatha Reddy ◽  
G. Murali ◽  
N. Madhusudhana Rao ◽  
R.P. Vijayalakshmi ◽  
B.K. Reddy

Undoped and Cr doped ZnS nanoparticles with Cr concentrations of 3.0 at.% were prepared by a chemical co-precipitation method for the fist time, using 2-Mercaptoethanol as the capping agent and annealed the synthesized particles at 600°C for 3h in air. The effect of annealing on morphological, structural and optical properties of ZnS and ZnS:Cr have been studied and compared with as prepared samples. EDAX measurements confirmed the presence of Cr in the ZnS lattice and it also confirms the conversion of ZnS into ZnO after annealed at 600 0C/3h. Surface morphologies of all samples were characterized using scanning electron microscopy (SEM). XRD spectra of as synthesized nanoparticles of ZnS and ZnS:Cr exhibited cubic phase. After annealing, the cubic phase is transformed into hexagonal phase. The particle sizes of the ZnS:Cr powders were increased from 5 to 30 nm when the powders were annealed at 600°C. A stable blue emission peak at 445 nm is observed from the as prepared samples (pure ZnS and Cr doped ZnS) but annealed at 600 0C the PL peaked at 500 nm for pure ZnS and Cr doped ZnS nanoparticles exhibited PL peak at 500 nm as well as 654 nm. The emission intensity decreased in annealed particles compared to as synthesized samples.


Author(s):  
S. Mohanapriya ◽  
M. Vennila ◽  
S. Kowsalya

ZnS nanoparticles were prepared from homogeneous chemical co-precipitation reaction by using zinc acetate, sodium sulfide [Na2S] and Poly Vinyl Polypyrrolidone [PVP]. The basic, morphological, and optical properties of the synthesized nanoparticles were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-ray Analysis (EDX) and Ultraviolet-Visible (UV-Vis) absorption. The structural and optical characterization of the samples observed by SEM, FTIR, EDX and UV-Vis spectrometer showed that ZnS nanoparticles were formed.


1996 ◽  
Vol 459 ◽  
Author(s):  
A. Ratna Phani ◽  
M. Pelino

ABSTRACTThe present investigation deals with the electrical response of noble metal doped SnO2 to improve the selectivity for Liquid Petroleum Gas (LPG) in the presence of CO and CH4. Addition of small amounts of nobel metals (Pd, Pt and Rh) to the base material SnO2 is carried out by co-precipitation method. X-ray diffraction and X-ray photoelectron spectroscopy studies are carried out to find out the crystalline phase and chemical composition of the SnO2. The sensor element has been tested for cross selectivity to reducing gases by measuring sensitivity versus sintering temperatures and sensitivity versus operating temperatures. The sensor elements with the composition of Pd (1.5 wt%) andPt (1.5 wt%) in the base material SnO2 sintered at 800°C showed high sensitivity towards LPG at an operating temperature of 350°C suggestingthe possibility to utilize the sensor for the detection of LPG.


2014 ◽  
Vol 563 ◽  
pp. 94-101 ◽  
Author(s):  
Mazidah Mamat ◽  
Tei Tagg ◽  
Wan Mohd Khairul ◽  
Mohd Aidil Adhha Abdullah ◽  
Norhayati Mohd Tahir ◽  
...  

The layered double hydroxides (LDHs) with different divalent transition metal groups and nitrate as a counter anion were investigated. Three d-block divalent metals namely cobalt (Co), nickel (Ni) and copper (Cu) were selected. The cobalt/aluminium (CoAN)-, nickel/aluminium (NiAN)- and copper/aluminium (CuAN)-layered double hydroxides were successfully synthesized via co-precipitation method. All the obtained LDHs were characterized by PXRD, FT-IR, ICP-OES, CHNS and TGA/DTG analysis. Interestingly, behavior of the LDHs was dependent on the size of divalent cations. PXRD showed the basal spacing decrease in the order NiAN (0.88nm)> CuAN (0.87nm) > CoAN (0.74nm), and in a linear correlation with the increasing radii of the divalent cations. Similar trend is observed for the weight loss of LDHs, where NiAN has the highest weight loss (53%), followed by CuAN (43%) and CoAN (34%). Further elemental analysis showed the content of trivalent metal cations, nitrate anions and water molecules in the LDHs decrease with the increasing radii.


Sign in / Sign up

Export Citation Format

Share Document