scholarly journals Experimental Investigations on Flexural Behaviour of Self Compacting Concrete Beam with Silica Fume

2021 ◽  
Vol 1145 (1) ◽  
pp. 012101
Author(s):  
C. Rajendra Prasath ◽  
D. Vivek ◽  
K. S Elango ◽  
R. Dharmaraj
2014 ◽  
Vol 11 (4) ◽  
pp. 323-330 ◽  
Author(s):  
S. Arivalagan

The present day world is witnessing the construction of very challenging and difficult civil engineering structures. Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fiber extends its possibilities. Steel fiber acts as a bridge to retard their cracks propagation, and improve several characteristics and properties of the concrete. Therefore, an attempt has been made in this investigation to study the Flexural Behaviour of Steel Fiber Reinforced self compacting concrete incorporating silica fume in the structural elements. The self compacting concrete mixtures have a coarse aggregate replacement of 25% and 35% by weight of silica fume. Totally eight mixers are investigated in which cement content, water content, dosage of superplasticers were all constant. Slump flow time and diameter, J-Ring, V-funnel, and L-Box were performed to assess the fresh properties of the concrete. The variable in this study was percentage of volume fraction (1.0, 1.5) of steel fiber. Finally, five beams were to be casted for study, out of which one was made with conventional concrete, one with SCC (25% silica fume) and other were with SCC (25% silica fume + 1% of steel fiber, 25% silica fume + 1.5% of steel fiber) one with SCC (35% silica fume), and other were SCC (35% Silica fume + 1% of steel fiber, 35% Silica fume + 1.5% of steel fiber). Compressive strength, flexural strength of the concrete was determined for hardened concrete for 7 and 28 days. This investigation is also done to determine the increase the compressive strength by addition of silica fume by varying the percentage.


2018 ◽  
Vol 15 (1) ◽  
pp. 31
Author(s):  
Nur Aiman Suparlan ◽  
Muhammad Azrul Ku Ayob ◽  
Hazrina Ahmad ◽  
Siti Hawa Hamzah ◽  
Mohd Hisbany Mohd Hashim

A ribbed slab structure has the advantage in the reduction of concrete volume in between the ribs resulting in a lower structural self-weight. In order to overcome the drawbacks in the construction process, the application of steel fibre self-compacting concrete (SCFRC) is seen as an alternative material to be used in the slab. This preliminary investigation was carried out to investigate the flexural behaviour of steel fibre self-compacting concrete (SCFRC) as the main material in ribbed slab omitting the conventional reinforcements. Two samples of ribbed slab were prepared for this preliminary study; 2-ribbed and 3-ribbed in 1 m width to identify the effect of the geometry to the slab’s flexural behaviour. The dimension of both samples is 2.5 m x 1 m with 150 mm thickness. The compressive strength of the mix is 48.6 MPa based on the cubes tested at 28 days. Load was applied to failure by using the four point bending test set-up with simple support condition. The result of the experiment recorded ultimate load carrying capacity at 30.68 kN for the 2-ribbed slab and 25.52 kN for 3-ribbed slab. From the results, the ultimate load of the 2-ribbed sample exceeds 3-ribbed by approximately 20%. This proved that even with lower concrete volume, the sample can still withstand an almost similar ultimate load. Cracks was also observed and recorded with the maximum crack width of 2 mm. It can be concluded that the steel fibres do have the potential to withstand flexural loadings. Steel fibre reduces macro-crack forming into micro-cracks and improves concrete ductility, as well as improvement in deflection. This shows that steel fibre reinforced self-compacting concrete is practical as it offers good concrete properties as well as it can be mixed, placed easier without compaction. 


2019 ◽  
Vol 164 (0) ◽  
pp. 193-213
Author(s):  
Taha E. Taha ◽  
Ahmed M. Tahwia ◽  
Ahmed H. Abdelraheem

2021 ◽  
Vol 43 ◽  
pp. 2361-2367
Author(s):  
Damma Manikanta ◽  
Durga Prasad Ravella ◽  
Sri Rama Chand M. ◽  
Janardhan Yadav M.

Author(s):  
Youcef Ghernouti ◽  
Bahia Rabehi ◽  
Sabria Malika Mansour

In this paper, influence of heat treatment on evolution of mechanical strengths at early age, less than 24hours of self-compacting concretes containing limestone powder and silica fume as fine materials was investigated experimentally. Two compositions of self-compacting concrete have been studied; the first is elaborated with silica fume addition and the second with limestone powder, each mixture were prepared with a constant water/binder ratio of 0.39. Concrete samples were either cured in water at (23±1°C), or steam cured at 65°C maximum temperature over six hours (6h) curing period. Tests of mechanical strengths were performed on specimens cooled down slowly to room temperature after heating.The obtained results show that all self-compacting mixtures exhibited satisfying fresh properties and check EFNARC specifications of self-compacting concrete (slump flow diameter higher than 650mm, L-box ratio higher than 80% and sieve stability less than 17%).Mechanical strengths of concrete containing limestone addition are slightly lower than those of concrete based on silica fume at all ages. Moreover, heat treatment generates an improvement of compressive and flexural strength. Interesting compressive strengths are obtained. At 24 hours, after heat treatment, the strengths are already greater than 35 MPa. The values ​​are 37 MPa and 40 MPa for self-compacting concrete containing limestone powder and silica fume respectively compared to 40 MPa and 46 MPa obtained at 7 days for the corresponding non-heat treated concretes. Compressive strength gain of SCCs mixtures with limestone powder and with silica fume, undergoing heat treatment at the age of 24hours is 85% and 75% respectively compared to SCCs mixtures cured in water.


Sign in / Sign up

Export Citation Format

Share Document