scholarly journals Corrigendum: Influence of metal matrix powder size on the tensile strength of a SiCp/AlSi7Mg0,6 composite produced by field assisted sintering technique (2021 IOP Conf. Ser.: Mater Sci Eng. 1147 012020)

2021 ◽  
Vol 1147 (1) ◽  
pp. 012036
Author(s):  
R Pippig ◽  
S J Hirsch ◽  
T Grund ◽  
T Lampke
2019 ◽  
Vol 13 (4) ◽  
pp. 5804-5817
Author(s):  
Ibrahim Sabry

It is expected that the demand for Metal Matrix Composite (MMCs) will increase in these applications in the aerospace and automotive industries sectors, strengthened AMC has different advantages over monolithic aluminium alloy as it has characteristics between matrix metal and reinforcement particles.  However, adequate joining technique, which is important for structural materials, has not been established for (MMCs) yet. Conventional fusion welding is difficult because of the irregular redistribution or reinforcement particles.  Also, the reaction between reinforcement particles and aluminium matrix as weld defects such as porosity in the fusion zone make fusion welding more difficult. The aim of this work was to show friction stir welding (FSW) feasibility for entering Al 6061/5 to Al 6061/18 wt. % SiCp composites has been produced by using stir casting technique. SiCp is added as reinforcement in to Aluminium alloy (Al 6061) for preparing metal matrix composite. This method is less expensive and very effective. Different rotational speeds,1000 and 1800 rpm and traverse speed 10 mm \ min was examined. Specimen composite plates having thick 10 mm were FS welded successfully. A high-speed steel (HSS) cylindrical instrument with conical pin form was used for FSW. The outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt. %) was 195 MPa at rotation speed 1800 rpm, the outcome revealed that the ultimate tensile strength of the welded joint (Al 6061/18 wt.%) was 165 MPa at rotation speed 1000 rpm, that was very near to the composite matrix as-cast strength. The research of microstructure showed the reason for increased joint strength and microhardness. The microstructural study showed the reason (4 %) for higher joint strength and microhardness.  due to Significant   of SiCp close to the boundary of the dynamically recrystallized and thermo mechanically affected zone (TMAZ) was observed through rotation speed 1800 rpm. The friction stir welded ultimate tensile strength Decreases as the volume fraction increases of SiCp (18 wt.%).


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1027-1032

Nano technology has fascinated the attention of numerous material scientists and design engineers. The nano scaled particulates incorporation exhibit many attractive and special properties. The inclusion of nano particulates into the copper matrix might augments the hardness, ultimate tensile strength and yield strength significantly increases, maintaining the ductility. In this paper, the nano Al2O3 reinforced copper - 5%tin- metal matrix composites were manufactured by stir casting technique and reinforcement is varied from 0wt. % to 9wt. % in ventures of 3wt. %. The nano composites are characterized in terms of their mechanical and wear properties. Results revealed that, the distribution of nano Al2O3 particulates is fairly uniform in copper - 5%tin metal matrix. As the level of reinforcement increases, hardness, yield strength, ultimate tensile strength, and wear resistance of the copper - 5%tin – nano Al2O3 metal matrix composites increases. The developed nano metal matrix composites may be an alternative material for bearing applications


2019 ◽  
Vol 1 (1) ◽  
pp. 38-48
Author(s):  
A. Sathishkumar ◽  
Gowtham A ◽  
M. Jeyasuriya ◽  
S. DineshBabu

Aluminum alloy is widely used in automotive, aerospace and other engineering industries because of its excellent mechanical properties. The main objective is to enhance 6061 Al alloy’s mechanical properties by producing 6061-B4C composite through squeeze casting process. Experimentation was carried out with different micron sizes and weight fraction of B4C particles. The mechanical properties of reinforced metal matrix were experimentally investigated in terms of Ultimate Tensile Strength and Hardness. We observe that these two properties are improved by the reinforcement of B4C particles and applied squeeze pressure.


Sign in / Sign up

Export Citation Format

Share Document