scholarly journals A Numerical Study on Chain-Die Forming of the aluminium profiles with variable cross-section

2021 ◽  
Vol 1157 (1) ◽  
pp. 012041
Author(s):  
K Lu ◽  
Z Liang ◽  
Y Liu ◽  
T Zou ◽  
D Li ◽  
...  
2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2011 ◽  
Vol 243-249 ◽  
pp. 4935-4938
Author(s):  
Li Li ◽  
Xiao Ze Du

The heat transfer characteristic through periodical variable cross-section passage is studied with numerical scheme. The results in multi-period variable cross-section channel show that the heat transfer enhancement can be obtained by forming flow destabilization at large Reynolds number. The parameters include pressure, velocity, temperature in the channel are symmetric about central line at low Reynolds number, then change to asymmetric at high Reynolds number. The variations occur firstly at the downstream near outlet of the channel and move upstream, which could improve the fluid mixing to increase the enhancement of heat transfer in channel.


2017 ◽  
Vol 898 ◽  
pp. 1177-1182 ◽  
Author(s):  
Y.G. Li ◽  
Y. Sun ◽  
H.L. Huang ◽  
D.Y. Li ◽  
S.C. Ding

Roll forming has been widely used to manufacture constant cross-section products because of high quality, efficiency and low cost. It is quite epidemic in producing automobile parts made of advanced high strength steels (AHSS) nowadays. However, with the development of the vehicle industry and diversity of the products, variable cross-section profiles have attracted more and more attention. The traditional roll forming technique is difficult to meet the requirements. Chain-die forming which was introduced in recent years makes it possible. Chain-die forming is an extension of roll forming and its key characteristic is enlarging the rotation radii of the moulds, by which the deformation zone is extended. The study focused on the finite element simulations of Chain-die forming U profiles with variable cross-section, including variable width and height. The feasibility of Chain-die forming producing variable cross-section products was verified by the perfect simulation results. The advantage of Chain-die forming was that there was no need to design the intermediate moulds except the finished-profile ones, which reduced the mould quantity immensely. Then the cost was lower.


2021 ◽  
Vol 12 (2) ◽  
pp. 89-106
Author(s):  
V. G. Lushchik ◽  
◽  
M. S. Makarova ◽  
A. I. Reshmin ◽  
◽  
...  

A description of the method of numerical study in the approximation of a narrow channel of the problems of flow and heat transfer in flat and circular channels of variable cross-section using a differential three-parameter model of shear turbulence is presented. The main results of numerous studies using the proposed method are described, one of the goals of which was to substantiate the possibility of using the narrow channel approximation. This review study is carried out in two parts. In the second part the results of the study of laminarization during flow in the con-fuser and the pipe, heat transfer intensification during flow in diffusers and in a plate heat exchanger with diffuser channels are presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Alexander Lopato ◽  
Pavel Utkin

The work is dedicated to the numerical study of detonation wave initiation and propagation in the variable cross-section axisymmetric channel filled with the model hydrogen-air mixture. The channel models the large-scale device for the utilization of worn-out tires. Mathematical model is based on two-dimensional axisymmetric Euler equations supplemented by global chemical kinetics model. The finite volume computational algorithm of the second approximation order for the calculation of two-dimensional flows with detonation waves on fully unstructured grids with triangular cells is developed. Three geometrical configurations of the channel are investigated, each with its own degree of the divergence of the conical part of the channel from the point of view of the pressure from the detonation wave on the end wall of the channel. The problem in consideration relates to the problem of waste recycling in the devices based on the detonation combustion of the fuel.


2011 ◽  
Vol 250-253 ◽  
pp. 3245-3248
Author(s):  
Li Li ◽  
Xiao Ze Du

The flow characterizations through periodical variable cross-section passage are performed by numerical simulations in the one wavelength passage with periodic inlet and outlet boundary conditions. The flow patterns through the transient method in the passage show the steady characteristic at low Reynolds number, and the unsteady characteristics include either occurrence or development of self-sustained oscillations as the increasing of Reynolds number. As a consequence of these flow characteristics, the fluid mixing between the core flow and vortexes in trough or crest in channel can be improved to increase the heat transfer.


2021 ◽  
Vol 12 (1) ◽  
pp. 21-30
Author(s):  
V. G. Lushchik ◽  
◽  
M. S. Makarova ◽  
A. I. Reshmin ◽  
◽  
...  

A description of the method of numerical study in the approximation of a narrow channel of the problems of flow and heat transfer in flat and circular channels of variable cross-section using a differential three-parameter model of shear turbulence is presented. The main results of numerous studies using the proposed method are described, one of the goals of which was to substantiate the possibility of using the narrow channel approximation. This review study is carried out in two parts. In the first part the results of studies of mixed convection in vertical pipes under conditions of stable and unstable stratification, as well as flows in channels with permeable walls in the presence of blowing or suction on the wall, are presented.


2019 ◽  
Vol 14 (2) ◽  
pp. 138-141
Author(s):  
I.M. Utyashev

Variable cross-section rods are used in many parts and mechanisms. For example, conical rods are widely used in percussion mechanisms. The strength of such parts directly depends on the natural frequencies of longitudinal vibrations. The paper presents a method that allows numerically finding the natural frequencies of longitudinal vibrations of an elastic rod with a variable cross section. This method is based on representing the cross-sectional area as an exponential function of a polynomial of degree n. Based on this idea, it was possible to formulate the Sturm-Liouville problem with boundary conditions of the third kind. The linearly independent functions of the general solution have the form of a power series in the variables x and λ, as a result of which the order of the characteristic equation depends on the choice of the number of terms in the series. The presented approach differs from the works of other authors both in the formulation and in the solution method. In the work, a rod with a rigidly fixed left end is considered, fixing on the right end can be either free, or elastic or rigid. The first three natural frequencies for various cross-sectional profiles are given. From the analysis of the numerical results it follows that in a rigidly fixed rod with thinning in the middle part, the first natural frequency is noticeably higher than that of a conical rod. It is shown that with an increase in the rigidity of fixation at the right end, the natural frequencies increase for all cross section profiles. The results of the study can be used to solve inverse problems of restoring the cross-sectional profile from a finite set of natural frequencies.


Sign in / Sign up

Export Citation Format

Share Document