scholarly journals Study on Abrasion Wear behaviour of Hybrid Composites using dimensional Analysis and Wear Models

2021 ◽  
Vol 1189 (1) ◽  
pp. 012026
Author(s):  
B M Rudresh ◽  
B N Ravikumar ◽  
D Madhu
Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1774
Author(s):  
Elżbieta Cygan-Bączek ◽  
Piotr Wyżga ◽  
Sławomir Cygan ◽  
Piotr Bała ◽  
Andrzej Romański

The work presents the possibility of fabricating materials for use as a matrix in sintered metallic-diamond tools with increased mechanical properties and abrasion wear resistance. In this study, the effect of micro-sized SiC, Al2O3, and ZrO2 additives on the wear behaviour of dispersion-strengthened metal-matrix composites was investigated. The development of metal-matrix composites (based on Fe–Mn–Cu–Sn–C) reinforced with micro-sized particles is a new approach to the substitution of critical raw materials commonly used for the matrix in sintered diamond-impregnated tools used for the machining of abrasive stone and concrete. The composites were prepared using spark plasma sintering (SPS). Apparent density, microstructural features, phase composition, Young’s modulus, hardness, and abrasion wear resistance were determined. An increase in the hardness and wear resistance of the dispersion-strengthened composites as compared to the base material (Fe–Mn–Cu–Sn–C) and the commercial alloy Co-20% WC provides metallic-diamond tools with high-performance properties.


2015 ◽  
Vol 90 ◽  
pp. 148-156 ◽  
Author(s):  
O. Carvalho ◽  
M. Buciumeanu ◽  
S. Madeira ◽  
D. Soares ◽  
F.S. Silva ◽  
...  

Vacuum ◽  
2017 ◽  
Vol 145 ◽  
pp. 320-333 ◽  
Author(s):  
H.M. Mallikarjuna ◽  
C.S. Ramesh ◽  
P.G. Koppad ◽  
R. Keshavamurthy ◽  
D. Sethuram

Author(s):  
Madeva Nagaral ◽  
B K Shivananda ◽  
Jayachandran ◽  
V Auradi ◽  
S A Kori

2010 ◽  
Vol 123-125 ◽  
pp. 1039-1042 ◽  
Author(s):  
S.P. Kumaresh Babu ◽  
Anand Chairman ◽  
N. Mohan ◽  
Siddaramaiah

The effect of tungsten carbide (WC) particulate fillers incorporation on two-body abrasive wear behaviour of glass fabric reinforced-epoxy (GE) composites was investigated and findings are interpreted. The wear behaviour of the composites were performed using pin-on-disc tester at varying abrasive distances viz., 25,50,75 and 100 m at a constant load of 20 N. The experiment was conducted using two different water proof silicon carbide (SiC) abrasive papers and at two different velocity under multi-pass condition. The wear loss of the composites found increasing with increase in abrading distances. A significant reduction in wear loss and specific wear rates were noticed after incorporation of WC filler into GE composite. This result indicates a significant improvement in wear resistance after incorporation of WC filler. The WC loaded systems exhibit less wear of matrix during abrasion which in turn facilitates lower fiber damage, due to the presence of WC particles on the counter surface which act as a transfer layer and effective barrier to prevent large-scale fragmentation. The worn out surface features were examined through scanning electron microscopy (SEM) in order to probe the wear mechanism.


2016 ◽  
Vol 852 ◽  
pp. 411-415
Author(s):  
T. Narendiranath Babu ◽  
Prasham Jain ◽  
Bipin Kumar Sharma

In recent years, both industrial and academic world are focussing their attention towards the development of sustainable composites, reinforced with fibres. In particular, among the fibres that can be used as reinforcement, the uniaxial glass fiber ones represent the most interesting for their properties. The aim of this work is to illustrate the results of friction and wear behaviour of uniaxial glass fibers with silicon carbide, aluminium oxide and graphite as the fillers. Moreover, its main manufacturing technologies have been described. The major component of these hybrid composite is uniaxial glass fibre with Epoxy LY556 (Resin). Hardener HY951 is used for hardening and support. Resin + Hardener are mixed in the ratio 10:1 and the mixture made up is called Matrix. Test materials of glass Fibre with varying compositions of 15% Al2O3 + SiC and glass fibre with varying compositions of 15% Graphite + SiC have been prepared by applying the matrix on glass cloth which is wrapped around the mandrel. The samples were tested in a pin-on-disc machine to determine the friction and wear losses. Further, the samples were tested on a pin-on-disc machine and frictional characteristics were monitored by varying speed and loads. Thus, the friction and wear characteristics have also been found out for the two specimens. From the experimental test results, it is observed that Al2O3 +Sic exihibits lower wear loss than SiC + Graphite under dry sliding conditions. Based on the observations, this hybrid composite are recommended to the manufacturing of the aircraft structures.


Sign in / Sign up

Export Citation Format

Share Document