scholarly journals Effect of magnetite on alginate-based hydrogel beads composite bio-sorbent for copper removal

2021 ◽  
Vol 1195 (1) ◽  
pp. 012052
Author(s):  
A S A Rahman ◽  
A N A Yahaya ◽  
N A Khalil ◽  
A N S Fizal ◽  
M A S A’zim ◽  
...  

Abstract A composite magnetite alginate-based bio-sorbent in hydrogel beads form as adsorbent for copper ion removal was prepared through this work. Two types of composite bio-sorbents which are cellulose-magnetite-alginate (CeMA) and chitosan-magnetite-alginate (CMA) hydrogel beads were synthesized by the physical cross-linking method. Ratios of magnetite iron oxide 0, 0.1, and 1.0 were used during the synthesis of bio-sorbents to observe the effect of magnetite ratios on copper ion removals. Based on the performance of bio-sorbents on copper removals, 24.6% of the highest percentage copper removal was achieved by CMA with a magnetite ratio of 0.1 at an adsorption equilibrium time of 24 hours and initial concentration of 100 mg/L. In addition, through this work, magnetite embedded bio-sorbent with the simple synthesized method was done by utilizing the capability of alginate to instantaneously form hydrogel beads upon addition into calcium chloride (Ca2+). Therefore, this work proves the potential of magnetite embedded in alginate-based composite bio-sorbent hydrogel beads for heavy metal industrial wastewater.

2019 ◽  
Vol 26 (1) ◽  
pp. 24-34 ◽  
Author(s):  
Mohammed Alameen Salem ◽  
Najwa Majeed

Cadmium is one of the heavy metal found in the wastewater of many industries. The electrocoagulation offers many advantages for the removal of cadmium over other methods. So the removal of cadmium from wastewater by using electrocoagulation was studied to investigate the effect of operating parameters on the removal efficiency. The studied parameters were the initial pH, initial concentration, and applied voltage. The study experiments were conducted in a batch reactor with  with two pairs of aluminum electrodes with dimension  and 2mm in thick with 1.5 cm space between them. The optimum removal was obtained at pH =7, initial concentration = 50 mg/L, and applied voltage = 20 V and it was 90%.


2006 ◽  
Vol 54 (10) ◽  
pp. 103-113 ◽  
Author(s):  
N. Li ◽  
R. Bai

Novel chitosan-based granular adsorbents were developed for enhanced and selective separation of heavy metal ions. The research included the synthesis of chitosan hydrogel beads, the cross-linking of the hydrogel beads with ethylene glycol diglycidyl ether (EGDE) in a conventional and a novel amine-shielded method, the functionalization of the chitosan beads through surface grafting of polyacrylamide via a surface-initiated atom transfer radical polymerization (ATRP) method, and the examination of the adsorption performance of the various types of chitosan beads in the removal of heavy metal ions. It was found that chitosan beads were effective in heavy metal adsorption, the conventional cross-linking method improved the acidic stability of the beads but reduced their adsorption capacity, the novel amine-shielded cross-linking method retained the good adsorption capacity while it improved the acidic stability of the beads, and the grafting of polyacrylamide on chitosan beads not only enhanced the adsorption capacity but also provided the beads with excellent selectivity for mercury over lead ions. XPS analyses indicated that the adsorption of metal ions on chitosan beads was mainly attributed to the amine groups of chitosan, the novel amine-shielded cross-linking method preserved most of the amine groups from being consumed by the cross-linking process and hence improved the adsorption capacity of the cross-linked chitosan beads, and the many amide groups from the polyacrylamide grafted on the chitosan beads increased the adsorption capacity and also made possible selective adsorption of mercury ions because the amide groups can form covalent bonds with mercury ions.


2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


2019 ◽  
Vol 219 ◽  
pp. 280-289 ◽  
Author(s):  
Min Liu ◽  
Yuting Wen ◽  
Xia Song ◽  
Jing-Ling Zhu ◽  
Jun Li

2017 ◽  
Vol 53 ◽  
pp. 132-140 ◽  
Author(s):  
Fang Xu ◽  
Ting-Ting Zhu ◽  
Qing-Quan Rao ◽  
Sheng-Wen Shui ◽  
Wen-Wei Li ◽  
...  

2015 ◽  
Vol 3 (3) ◽  
pp. 1669-1677 ◽  
Author(s):  
Mohammad S. Al-Harahsheh ◽  
Kamel Al Zboon ◽  
Leema Al-Makhadmeh ◽  
Muhannad Hararah ◽  
Mehaysen Mahasneh

Sign in / Sign up

Export Citation Format

Share Document