scholarly journals Stabilization of Slopes of Sandy Soils by Using Geosynthetics

2021 ◽  
Vol 1197 (1) ◽  
pp. 012081
Author(s):  
Tudumu Viveka ◽  
Namburu Sandeep Kumar ◽  
K. Shyam Chamberlin

Abstract This paper intended on the interactive performance of geo-synthetics in slope stabilization of non-cohesive soils. Presently, geo-synthetics are performing crucial role in geo-technical uses for reinforcing of soils for slope of stabilization, soil reinforcement for foundations, R E walls for highway and flyover construction etc. Usually, cohesion less soil is ideal for backfills of the embankments as of its exceptional drainage properties, at a low-level hydrostatic pressure built-up on slopes and excessive internal resistance owing to friction and interlocking. To research this property of geo-synthetics, relative density and shear box tests are done on the soil by varying geosynthetics for assessment of the shear parameters of sample. The mosquito reinforcement net as reinforcement on cohesionless soils, improvement in the angle of internal friction of the soil was observed by twenty-two percentage that the shear strength to be improved by 26.5%. So, the soil’s lateral load resistance or load transfer capacity improved to prevent the slope failure thereby saves the entire structure.

2020 ◽  
pp. 136943322098165
Author(s):  
Kai Qian ◽  
Hai-Ning Hu ◽  
Yun-Hao Weng ◽  
Xiao-Fang Deng ◽  
Ting Huang

This paper presents the high-fidelity finite-element-based numerical models for modeling the behavior of prestressed concrete (PC) beam-column substructures to resist progressive collapse under column removal scenario. After careful calibration against data, the validated numerical models are further employed to shed light on the influence of bonded post-tensioned tendons (BPT) with a parabolic profile on the load transfer mechanisms of PC frames against progressive collapse. The effects of parameters, including initial effective prestress, profile of tendon and lateral constraint stiffness at the beam ends, are also investigated. The study shows that, due to the presence of prestressed tendons, the mobilization of compressive arch action in the beam at small deflections demands stronger lateral constraints, and the ultimate load resistance of PC beam-column substructures depends on combined catenary action from non-prestressed reinforcement and BPT at large deflections. For a given constraint stiffness, the initial effective prestress of BPT has less significant effect on the overall structural behavior. For prestressed tendon, a straight profile usually employed in structural strengthening can improve the initial structural stiffness and yield strength, but is less effective in enhancing the ultimate resistance against progressive collapse than the parabolic profile.


2011 ◽  
Vol 194-196 ◽  
pp. 1951-1957
Author(s):  
Wei Yang ◽  
Man Sheng Wang ◽  
Er Yu Zhu ◽  
Yu Cheng

In terms of the characteristics of Beijing masonry Structure, the quasi-static test is performed to the rural single-storey brick structure in the study. There are four sets of test specimens discussed in the paper. The first and second specimens are the unreinforced wall with different mortar strength and used for reference purpose, the others are the specimens which are strengthened by using steel mesh mortar and reinforced concrete columns with ring beam respectively. The testing phenomena of all specimens are compared in the paper. Meanwhile, the three parameters of lateral load resistance,hysteretic curve and deformability capacity are concerned in comparison process. Moreover, the mechanism of resistance and energy dissipation capacity of both reinforcement methods are analyzed in the study, and then the steel mesh mortar will be a proper method to use in the Beijing rural brick building seismic reinforcement. The systematic analysis in the paper provides theory basis on the seismic reinforcement in the Beijing rural reconstruction.


2020 ◽  
Vol 34 (11) ◽  
pp. 2050102
Author(s):  
Amirhosein Mosavi ◽  
Beszedes Bertalan ◽  
Felde Imre ◽  
Laszlo Nadai ◽  
Nima E. Gorji

A precise characterization of thin-film solar cells is of huge importance for obtaining high open-circuit voltage and low recombination rates from the interfaces or within the bulk of the main materials. Among many electrical characterization techniques, the two- and four-wire probe using the Cascade instrument is of interest since the resistance of the wires and the electrical contacts can be excluded by the additional two wires in four-wire probe configuration. In this paper, both two- and four-point probes configuration are employed to characterize the CIGS chalcogenide thin-film solar cells. The two-wire probe has been used to measure the current–voltage characteristics of the cell which results in a huge internal resistance. Therefore, the four-wire connection is also used to eliminate the load resistance to enhance the characterization’s accuracy. The load resistance in the two-wire probe diminishes the photogenerated current density at smaller voltage ranges. In contrast, the proposed four-wire probe collects more current at higher voltages due to enhanced carrier collection efficiency from contact electrodes. The current conduction mechanism is also identified at every voltage region represented by the value of the ideality factor of that voltage region. It is observed that a longer time given to the charge collection results in increased current density at a higher voltage. According to the results and device characteristics, a novel double-diode model is suggested to extract the saturation current density, shunt and series resistances and ideality factor of the cells. These cells are shown to be efficient in terms of low recombination at the interfaces and with lower series resistance as the quality of the materials is in its most possible conductive form. The measured internal resistance and saturation current density and ideality factor of the two measurement configurations are measured and compared.


2016 ◽  
Vol 857 ◽  
pp. 19-23
Author(s):  
Ann Peter Minu ◽  
A.S. Sajith ◽  
Nagarajan Praveen

Diagrid structures are exterior structures, consisting of diagonal struts and ties in the periphery and an interior core. These diagonal members carry gravity load and lateral load by the axial action of the member. Due to the structural efficiency of diagrids, interior and corner columns can be avoided thereby providing flexibility in the floor plan. The diagrid structures are emerging as popular structural system in many developed countries of the world, but in India it is yet to gain importance. This paper presents a review on the literature of diagrid structures. Studies conducted on diagrid structures to determine the diagrid angle for the efficient design is presented. The stiffness-based methodology adopted for determining preliminary member sizes of steel diagrid structures and the effect of shear lag on high rise buildings with diagrid and its comparison with framed tube structures are discussed. The distribution of the load resisted by interior frame and diagrids is outlined. The parameters used in the comparison of analysis are time period, top storey displacement, inter-storey drift and storey shear. This paper also reviews the studies on the comparison of diagrids with regular configuration and diagrids with varying angles. The analysis and comparison of diagrid and conventional structural system on the basis of consumption of steel, structural weight and displacement are also highlighted. This review covers diagrids with all the materials in practice namely concrete, steel and concrete-filled steel tube(CFST).


Author(s):  
Renate Fruchter ◽  
Helmut Krawinkler ◽  
Kincho H. Law

This paper discusses a work in progress in the development of computer tools for qualitative modeling analysis and evaluation of conceptual structural designs. In the conceptual design stage the description of a structure is incomplete and imprecise, and does not permit the use of traditional numerical analysis tools. We describe a prototype system, QLRS, for qualitative evaluation of lateral load resistance in frames. The primary goal of the evaluation of structural response is to identify undesirable structural behavior. In QLRS, the evaluation process consists of three basic tasks. (1) identification of the story and structure models comprising the lateral load resisting system. We term this task structural system interpretation. (2) Qualitative analysis of the story and structure models, and approximate evaluation of the story drifts. We term this task structural behavior interpretation. (3) Assessment of the performance of the lateral load resisting system, in which the results of the structural system interpretation and the structural behavior interpretation are compared against the requirements for complete load path and relative story drift. Currently, QLRS is able to reason about load path discontinuities and soft-story behavior problems in 2-D moment resisting frames.


2009 ◽  
Vol 15 (4) ◽  
pp. 122-130 ◽  
Author(s):  
Ali M. Memari ◽  
Bohumil Kasal ◽  
Harvey B. Manbeck ◽  
Andrew R. Adams

Author(s):  
Trevor Kelly

Although shear walls are a widely used system for providing lateral load resistance, nonlinear analysis procedures for this type of element are much less well developed than those for frame and truss elements. Equivalent flexural models do not include shear deformation and are only suited for symmetric, straight walls. This paper describes the development of an analysis model which includes nonlinear effects for both shear and flexure. The formulation is based on a "macro" modelling approach which is suitable for complete building models in a design office environment. An analysis methodology is developed using engineering mechanics and experimental results and implemented in an existing nonlinear analysis computer program. A model is developed and validated against test results of solid walls and walls with openings. This shows that the model can capture the general characteristics of hysteretic response and the maximum strength of the wall. Results can be evaluated using acceptance criteria derived from published guidelines. An example shear wall building is then evaluated using both the nonlinear static and the nonlinear dynamic procedures. The procedure is shown to be a practical method for implementing performance based design procedures for shear wall buildings.


Sign in / Sign up

Export Citation Format

Share Document