scholarly journals Global analysis of floating offshore wind turbines with shared mooring system

2021 ◽  
Vol 1201 (1) ◽  
pp. 012024
Author(s):  
H Munir ◽  
C F Lee ◽  
M C Ong

Abstract Floating wind turbines (FWTs) with shared mooring systems can be one of the most cost- effective solutions in reducing mooring costs. First, the static configuration of a shared line is estimated using the elastic catenary equation. The present study investigates the global responses of two FWT with a shared mooring system. Two shared mooring configurations with different horizontal distances between the FWTs are considered. In the first configuration, the FWTs are placed 750m apart; and in the second configuration, they are placed 1000m apart. Two different environmental conditions (ECs) are used to simulate the global responses of the system in time domain. The shared mooring line results in higher extreme motions in surge and sway (degree of freedoms) DOFs due to the reduction of mooring restoring stiffness. The lower mooring restoring stiffness can be attributed to the reduction of one seabed anchoring point for each FWT as compared to a single FWT with three anchors installed. In the rotational DOFs, the shared mooring line configurations result in slight mean offset in each direction and significant increase in the motion standard deviations. This is caused by the reduced mooring stiffness associated with the change in platform orientation.

2019 ◽  
Vol 9 (3) ◽  
pp. 608 ◽  
Author(s):  
Yu-Hsien Lin ◽  
Shin-Hung Kao ◽  
Cheng-Hao Yang

This study aims to develop a modularized simulation system to estimate dynamic responses of floating Offshore Wind Turbines (OWTs) based on the concepts of spar buoy and Tension Leg Platform (TLP) corresponding with two typical mooring lines. The modular system consists of the hydrodynamic simulator based the Cummins time domain equation, the Boundary Element Method (BEM) solver based on the 3D source distribution method, and an open-source visualization software ParaView to analyze the interaction between floating OWTs and waves. In order to realize the effects of mooring loads on the floating OWTs, the stiffness and damping matrices are applied to the quasi-static mooring system. The Response Amplitude Operators (RAOs) are compared between our predicted results and other published data to verify the modularized simulation system and understand the influence of mooring load on the motion responses in regular or irregular waves. It is also demonstrated that the quasi-static mooring system is applicable to different types of mooring lines as well as determining real-time motion responses. Eventually, wave load components at the resonance frequencies of different motion modes for selected floating OWTs would be present in the time domain.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


Author(s):  
Jason M. Jonkman ◽  
Rick R. Damiani ◽  
Emmanuel S. P. Branlard ◽  
Matthew Hall ◽  
Amy N. Robertson ◽  
...  

Abstract OpenFAST is an open-source, physics-based engineering tool applicable to the load analysis of land-based and offshore wind turbines, including floating offshore wind turbines. The substructure for a floating wind turbine has historically been modeled in OpenFAST as a rigid body with hydrodynamic loads lumped at a point, which enabled the tool to predict the global response of the floating substructure but not the structural loads within its individual members. This limitation is an impediment to designing floating substructures — especially newer designs that are more streamlined, flexible, and cost-effective. This paper presents the development plan of new capabilities in OpenFAST to model floating substructure flexibility and member-level loads, including the functional requirements and modeling approaches needed to understand and apply them correctly.


Author(s):  
Yajun Ren ◽  
Vengatesan Venugopal

Abstract The complex dynamic characteristics of Floating Offshore Wind Turbines (FOWTs) have raised wider consideration, as they are likely to experience harsher environments and higher instabilities than the bottom fixed offshore wind turbines. Safer design of a mooring system is critical for floating offshore wind turbine structures for station keeping. Failure of mooring lines may lead to further destruction, such as significant changes to the platform’s location and possible collisions with a neighbouring platform and eventually complete loss of the turbine structure may occur. The present study focuses on the dynamic responses of the National Renewable Energy Laboratory (NREL)’s OC3-Hywind spar type floating platform with a NREL offshore 5-MW baseline wind turbine under failed mooring conditions using the fully coupled numerical simulation tool FAST. The platform motions in surge, heave and pitch under multiple scenarios are calculated in time-domain. The results describing the FOWT motions in the form of response amplitude operators (RAOs) and spectral densities are presented and discussed in detail. The results indicate that the loss of the mooring system firstly leads to longdistance drift and changes in platform motions. The natural frequencies and the energy contents of the platform motion, the RAOs of the floating structures are affected by the mooring failure to different degrees.


Author(s):  
Magnus J. Harrold ◽  
Philipp R. Thies ◽  
Peter Halswell ◽  
Lars Johanning ◽  
David Newsam ◽  
...  

Abstract Existing mooring systems for floating offshore wind turbines are largely based on designs from the oil and gas industry. Even though these can ensure the safe station keeping of the floating wind platform, the design of the mooring system is currently largely conservative, leading to additional expense in an industry striving to achieve cost reduction. Recent interest in the usage of mooring materials with non-linear stiffness has shown that they have the potential to reduce peak line loads, ultimately reducing cost. This paper reports on the combined physical testing and numerical modeling of a hydraulic-based mooring component with these characteristics. The results suggest that the inclusion of the component as part of the OC4 semi-submersible platform can reduce the peak line loads by 10%. The paper also discusses a number of challenges associated with modeling and testing dynamic mooring materials.


Author(s):  
Luigia Riefolo ◽  
Fernando del Jesus ◽  
Raúl Guanche García ◽  
Giuseppe Roberto Tomasicchio ◽  
Daniela Pantusa

The design methodology for mooring systems for a spar buoy wind turbine considers the influence of extreme events and wind/wave misalignments occurring in its lifetime. Therefore, the variety of wind and wave directions affects over the seakeeping and as a result the evaluation of the maxima loads acting on the spar-buoy wind turbine. In the present paper, the importance of wind/wave misalignments on the dynamic response of spar-type floating wind turbine [1] is investigated. Based on standards, International Electrotechnical Commission IEC and Det Norske Veritas DNV the design of position moorings should be carried out under extreme wind/wave loads, taking into account their misalignments with respect to the structure. In particular, DNV standard, in ‘Position mooring’ recommendations, specifies in the load cases definition, if site specific data is not available, to consider non-collinear environment to have wave towards the unit’s bow (0°) and wind 30° relative to the waves. In IEC standards, the misalignment of the wind and wave directions shall be considered to design offshore wind turbines and calculate the loads acting on the support structure. Ultimate Limit State (ULS) analyses of the OC3-Hywind spar buoy wind turbine are conducted through FAST code, a certified nonlinear aero-hydro-servo-elastic simulation tool by the National Renewable Energy Laboratory’s (NREL’s). This software was developed for use in the International Energy Agency (IEA) Offshore Code Comparison Collaborative (OC3) project, and supports NREL’s offshore 5-MW baseline turbine. In order to assess the effects of misaligned wind and wave, different wind directions are chosen, maintaining the wave loads perpendicular to the structure. Stochastic, full-fields, turbulence simulator Turbsim is used to simulate the 1-h turbulent wind field. The scope of the work is to investigate the effects of wind/wave misalignments on the station-keeping system of spar buoy wind turbine. Results are presented in terms of global maxima determined through mean up-crossing with moving average, which, then, are modelled by a Weibull distribution. Finally, extreme values are estimated depending on global maxima and fitted on Gumbel distribution. The Most Probable Maximum value of mooring line tensions is found to be influenced by the wind/wave misalignments. The present paper is organized as follows. Section ‘Introduction’, based on a literature study, gives useful information on the previous studies conducted on the wind/wave misalignments effects of floating offshore wind turbines. Section ‘Methodology’ describes the applied methodology and presents the spar buoy wind turbine, the used numerical model and the selected environmental conditions. Results and the corresponding discussion are given in Section ‘Results and discussion’ for each load case corresponding to the codirectional and misaligned wind and wave loads. Results are presented and discussed in time and frequency domains. Finally, in Section ‘Conclusion’ some conclusions are drawn.


2020 ◽  
Vol 1618 ◽  
pp. 022049
Author(s):  
Yichao Liu ◽  
Alessandro Fontanella ◽  
Ping Wu ◽  
Riccardo M.G. Ferrari ◽  
Jan-Willem van Wingerden

Sign in / Sign up

Export Citation Format

Share Document