scholarly journals Removal of organic micropollutants in the biological units of a Swedish wastewater treatment plant

2021 ◽  
Vol 1209 (1) ◽  
pp. 012016
Author(s):  
C Burzio ◽  
E Nivert ◽  
A Mattsson ◽  
O Svahn ◽  
F Persson ◽  
...  

Abstract The present study investigates the presence and removal of target organic micropollutants in a large Swedish wastewater treatment plant designed for nutrient removal including activated sludge, trickling filters, nitrifying moving bed biofilm reactors (MBBRs) and post-denitrifying MBBRs. A total of 28 organic micropollutants were analysed, at concentrations ranging from few ng/L to µg/L, in the influent and effluent of the different biological reactors in two sampling campaigns. The observed micropollutant removal efficiencies of the wastewater treatment plant varied from insignificant (< 20%) to high (> 90%) between compounds. The activated sludge reactor, being the first in line, contributed to most of the removal from the water phase. Additional removal of a few compounds was observed in the biofilm units, but most of the persistent compounds remained stable through all biological treatments.

2020 ◽  
Vol 12 (9) ◽  
pp. 1461
Author(s):  
Jorge Sancho Martínez ◽  
Yadira Bajón Fernández ◽  
Paul Leinster ◽  
Mónica Rivas Casado

Wastewater treatment plants are essential for preserving the water quality of freshwater and marine ecosystems. It is estimated that, in the UK, as much as 11 billion liters of wastewater are treated on a daily basis. Effective and efficient treatment of wastewater requires treatment plants to be maintained in good condition. Recent studies have highlighted the potential of unmanned aircraft systems (UASs) and image processing to be used in autonomous and automated monitoring systems. However, the combined use of UASs and image processing for wastewater treatment plant inspections has not yet been tested. This paper presents a novel image processing-UAS framework for the identification of failures in trickling filters and activated sludge facilities. The results show that the proposed framework has an accuracy of 95% in the detection of failures in activated sludge assets, with the accuracy ranging between 55% and 81% for trickling filters. These results are promising and they highlight the potential use of the technology for the inspection of wastewater treatment plants.


Author(s):  
Asaad Seraj Aburzizah, Fahad Salih Aljohani

Wastewater may be described as water that was used to convey pollutants away from a source of pollution. It originates in homes, businesses, schools, hospitals, prisons, and industries, and was ultimately discharged back into the environment. Solids are present in nearly every wastewater, may be very detrimental environmentally, and so are very often regulated in discharges of wastewater. The aimed of this study was to intend the usage of the Activated Sludge Process Control and operating the activated sludge process, including nutrient removal, and troubleshooting. This study was contacted with Saudi Arabia waste water plants as guideline for maintenance and troubleshoots. When troubleshooting activated sludge problems, was to overlook obvious sources and solutions in favor of the strange and unusual.  


1994 ◽  
Vol 29 (12) ◽  
pp. 81-88 ◽  
Author(s):  
N. Dichtl ◽  
N. Engelhardt ◽  
W. Firk ◽  
J. Koppetsch

Stricter waste quality standards necessitated the upgrading of a large wastewater treatment plant. Taken with constraints on cost and physical space this led to the investigation of a wide range of conventional and unconventional plant configurations that integrate the existing trickling filters to achieve the nutrient removal target.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 131-138
Author(s):  
Ahmed Fadel

Many of Egypt's cities have existing treatment plants under operation that have been constructed before 1970. Almost all of these treatment plants now need rehabilitation and upgrading to extend their services for a longer period. One of these plants is the Beni Suef City Wastewater Treatment Plant. The Beni Suef WWTP was constructed in 1956. It has primary treatment followed by secondary treatment employing intermediate rate trickling filters. The BOD, COD, and SS concentration levels are relatively high. They are approximately 800, 1100, and 600 mg/litre, respectively. The Beni Suef city required the determination of the level of work needed for the rehabilitation and upgrading of the existing 200 l/s plant and to extend its capacity to 440 l/s at year 2000 A description of the existing units, their deficiencies and operation problems, and the required rehabilitation are presented and discussed in this paper. Major problems facing the upgrading were the lack of space for expansion and the shortage of funds. It was, therefore, necessary to study several alternative solutions and methods of treatment. The choice of alternatives was from one of the following schemes: a) changing the filter medium, its mode of operation and increasing the number of units, b) changing the trickling filter to high rate and combining it with the activated sludge process, for operation by one of several possible combinations such as: trickling filter-solids contact, roughing filter-activated sludge, and trickling filter-activated sludge process, c) dividing the flow into two parts, the first part to be treated using the existing system and the second part to be treated by activated sludge process, and d) expanding the existing system by increasing the numbers of the different process units. The selection of the alternative was based on technical, operational and economic evaluations. The different alternatives were compared on the basis of system costs, shock load handling, treatment plant operation and predicted effluent quality. The flow schemes for the alternatives are presented. The methodology of selecting the best alternative is discussed. From the study it was concluded that the first alternative is the most reliable from the point of view of costs, handling shock load, and operation.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


1997 ◽  
Vol 36 (2-3) ◽  
pp. 1-8 ◽  
Author(s):  
P. Grau ◽  
B. P. Da-Rin

An unusually severe case of toxicity accompanied by activated sludge filamentous bulking was observed at the wastewater treatment plant Sao Paulo-Barueri. Treatment efficiency of the plant, operated without major problems for more than five years before, was significantly hindered for almost six months. Occurrence of toxic shocks was confirmed partly directly but mostly indirectly by inhibition of nitrification and biological phenomena related to toxicity. Several measures adopted, including the recycled activated sludge chlorination, are described in the paper.


1998 ◽  
Vol 37 (12) ◽  
pp. 141-148 ◽  
Author(s):  
B. K. Lee ◽  
S. W. Sung ◽  
H. D. Chun ◽  
J. K. Koo

The objective of this study is to develop an automatic control system for dissolved oxygen (DO) and pH of the activated sludge process in a coke wastewater treatment plant. A discrete type autotuned proportional-integral (PI) controller using an auto-regressive exogenous (ARX) model as a process model was developed to maintain the DO concentration in aerators by controlling the speed of surface aerators. Also a nonlinear pH controller using the titration curve was used to control the pH of influent wastewater. This control system was tested in a pilot scale plant. During this pilot plant experiment, there was small deviation of pH and the electric power consumption of surface aerators was reduced up to 70% with respect to the full operation when the DO set point was 2 mg/l. For real plant operation with this system, the discrete PI controller showed good tracking for set point change. The electricity saving was more than 40% of the electricity consumption when considering surface aerators. As a result of maintaining the DO constantly at the set point by the automatic control system, the fluctuation of effluent quality was decreased and overall improvement of the effluent water quality was achieved.


Sign in / Sign up

Export Citation Format

Share Document