scholarly journals Effect of Stitching on the Tensile Mechanical Property of Empty Fruit Bunch Oil Palm Fiber Reinforced Epoxy Composites

Author(s):  
A L Ahmad Ghazilan ◽  
H Mokhtar ◽  
M S I Shaik Dawood ◽  
Y Aminanda ◽  
J S Mohamed Ali
Author(s):  
A L Ahmad Ghazilan ◽  
H Mokhtar ◽  
M S I Shaik Dawood ◽  
Y Aminanda ◽  
J S Mohamed Ali

2020 ◽  
Vol 8 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Mohd Nazri Ahmad ◽  
Mohammad Khalid Wahid ◽  
Nurul Ain Maidin ◽  
Mohd Hidayat Ab Rahman ◽  
Mohd Hairizal Osman ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2052
Author(s):  
Farah Hanan ◽  
Mohammad Jawaid ◽  
Md Tahir Paridah ◽  
Jesuarockiam Naveen

In this research, the physical, mechanical and morphological properties of oil palm empty fruit bunch (EFB) mat/woven kenaf fabric-reinforced epoxy composites have been investigated. The oil palm EFB/woven kenaf fabrics were varied, with weight ratios of 50/0 (T1), 35/15 (T2), 25/25 (T3), 15/35 (T4) and 0/50 (T5). The composites were fabricated using a simple hand lay-up technique followed by hot pressing. The result obtained shows that an increase in kenaf fiber content exhibited higher tensile and flexural properties. On the other hand, the opposite trend was observed in the impact strength of hybrid composites, where an increase in kenaf fiber content reduced the impact strength. This can be corroborated with the physical properties analysis, where a higher void content, water absorption and thickness swelling were observed for pure oil palm EFB (T1) composites compared to other samples. The scanning electron microscopy analysis results clearly show the different failure modes of the tensile fractured samples. Statistical analysis was performed using one-way ANOVA and shows significant differences between the obtained results.


2020 ◽  
Vol 305 ◽  
pp. 28-35
Author(s):  
Anslem Wong Tsu An ◽  
Sujan Debnath ◽  
Vincent Lee Chieng Chen ◽  
Moola Mohan Reddy ◽  
Alokesh Pramanik

In recent years, studies regarding natural fiber reinforced composites have been increased as they are biodegradable with good mechanical performance therefore can help to overcome the environmental issue. As the natural fibers are easy to obtain, many industries have started to make use of natural fiber composites which are light in weight and possess good mechanical properties. However, the natural fiber composites also possess certain limitations most importantly their high moisture absorption ability which makes them incompatible at degradable environment. The fiber constituents of natural fiber composite may have different type of interactions at different environmental conditions. In addition, the involvement of nanoparticles in the composite may be the solution to overcome the deficiencies. In this research, the degradation behaviour of Oil palm empty fruit bunch (OPEFB) fibers reinforced epoxy composites upon exposure to degradable environmental conditions and the effect of adding nanoparticles have been studied. The tensile tests were conducted before and after the exposure to different environmental conditions including plain water, moist soil, brine solution, and cooking oil. Results shows that the addition of 10wt% of OPEFB fiber to the epoxy composites had improved the mechanical tensile strength up to 15.97% and composites exposed to brine solution have the most prominent sign of degradation in mechanical properties in both composites with and without nanosilica. Nevertheless, the composites with nanosilica have shown up to 24.28% improvement in tensile strength after exposure to different environmental conditions. The improvement were attributed due to filling the voids of the composites with nanosilica and good interfacial adhesion between the nanofiller, fiber, and matrix.


2008 ◽  
Vol 15 (2-3) ◽  
pp. 251-262 ◽  
Author(s):  
M. Khalid ◽  
A. Salmiaton ◽  
T. G. Chuah ◽  
C. T. Ratnam ◽  
S. Y. Thomas Choong

2010 ◽  
Vol 31 (12) ◽  
pp. 2079-2101 ◽  
Author(s):  
Azman Hassan ◽  
Arshad Adam Salema ◽  
Farid Nasir Ani ◽  
Aznizam Abu Bakar

Sign in / Sign up

Export Citation Format

Share Document