scholarly journals Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

Author(s):  
Libao Yin ◽  
Yanfen Liao ◽  
Lianjie Zhou ◽  
Zhao Wang ◽  
Xiaoqian Ma
Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 114
Author(s):  
Tao Li ◽  
Yi Miao Song ◽  
Ang Li ◽  
Jing Shen ◽  
Chao Liang ◽  
...  

Environmental protection pressures and green energy strategies have created major challenges for a cleaner production of China’s coal-fired power generation. Although China’s electric power dispatching department has tried to prioritize clean energy, the current dispatching models lack environmental indicators related to coal-fired power generation. The main purpose of this paper is to provide a comprehensive environmental indicator for the cleanliness evaluation of coal-fired power plants. In this paper, the (Emergy-based Life Cycle Assessment) Em-LCA method is used to measure and analyze environmental related resource consumption, socio-economic investment, and emissions in the whole life cycle of coal-fired power plants. At the same time, based on the above three environmental impacts in the whole life cycle, this paper constructs the (Em-LCA based Cleaner Production Comprehensive Evaluation) ECPCE index to guide a green dispatching plan. By comparing the calculation results of the index, this paper finds that there are differences in the environmental advantages of different generating units in green dispatching, which are closely related to the process management of coal-fired power plants in production and the environment.


2013 ◽  
Vol 448-453 ◽  
pp. 1897-1903
Author(s):  
Jia Hua Dong ◽  
Wei Guang Zhu ◽  
Cheng Kang Gao

Wind power is an important type of renewable energy sources. In this passage we will apply Life Cycle Assessment (LCA) to analyze the four stages of wind power generation,which are production of raw materials, transportation, build-operate process of wind plants and demolition stages, calculate the energy consumption and the environmental impact, set a contrastive analysis between coal-fired power plants and wind power plants. We will take WangHaiSi Wind Plant in Faku, Shenyang as an example to show the difference between the two ways of getting power. The analysis shows that: in comparison with coal-fired generation, wind power generation saves more energy and reduces emissions of pollutants markedly; the main energy consumption comes from production of raw materials, which takes 79.3% of the total energy consumption throughout the life cycle. In the meantime, the large amount of ecological resources consumption from construction, operation and maintenance of wind plants leads to mass emission of carbon dioxide and sulfur dioxide, which respectively take 67.3% and 96.6% of total emissions. Besides, wind generation only accounts for 0.93%, 0.89% and 2.72% of energy consumption, global warming potential (GWP) and acid potential (AP) of coal-fired power generation. Thus, it proved that wind power generation has lesser impacts on environment than coal-fired power generation. However, it is still of great necessity to strengthen the environmental protection measures to reduce the consumption and destroy of ecologic resources.


2021 ◽  
Vol 128 ◽  
pp. 1-15
Author(s):  
Navarro Ferronato ◽  
Luca Moresco ◽  
Gabriela Edith Guisbert Lizarazu ◽  
Marcelo Antonio Gorritty Portillo ◽  
Fabio Conti ◽  
...  

Author(s):  
Md.Musharof Hussain Khan ◽  
Ivan Deviatkin ◽  
Jouni Havukainen ◽  
Mika Horttanainen

Abstract Purpose Waste recycling is one of the essential tools for the European Union’s transition towards a circular economy. One of the possibilities for recycling wood and plastic waste is to utilise it to produce composite product. This study analyses the environmental impacts of producing composite pallets made of wood and plastic waste from construction and demolition activities in Finland. It also compares these impacts with conventional wooden and plastic pallets made of virgin materials. Methods Two different life cycle assessment methods were used: attributional life cycle assessment and consequential life cycle assessment. In both of the life cycle assessment studies, 1000 trips were considered as the functional unit. Furthermore, end-of-life allocation formula such as 0:100 with a credit system had been used in this study. This study also used sensitivity analysis and normalisation calculation to determine the best performing pallet. Result and discussion In the attributional cradle-to-grave life cycle assessment, wood-polymer composite pallets had the lowest environmental impact in abiotic depletion potential (fossil), acidification potential, eutrophication potential, global warming potential (including biogenic carbon), global warming potential (including biogenic carbon) with indirect land-use change, and ozone depletion potential. In contrast, wooden pallets showed the lowest impact on global warming potential (excluding biogenic carbon). In the consequential life cycle assessment, wood-polymer composite pallets showed the best environmental impact in all impact categories. In both attributional and consequential life cycle assessments, plastic pallet had the maximum impact. The sensitivity analysis and normalisation calculation showed that wood-polymer composite pallets can be a better choice over plastic and wooden pallet. Conclusions The overall results of the pallets depends on the methodological approach of the LCA. However, it can be concluded that the wood-polymer composite pallet can be a better choice over the plastic pallet and, in most cases, over the wooden pallet. This study will be of use to the pallet industry and relevant stakeholders.


2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


Sign in / Sign up

Export Citation Format

Share Document