scholarly journals Simulation of the Vibratory Condition of the Compressor Blade with a Pressed wire Material “MR” Damper Which Located Around the Root Attachment

Author(s):  
Alexander S. Gvozdev ◽  
Vladimir S. Melentjev
Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Tao Wang ◽  
Zhengmu Zhou ◽  
Yaqin Zhou

This paper presents the damping characteristics of a linear magneto-rheological (MR) damper with dual controllable ducts based on numerical and experimental analysis. The novel MR damper consisting of a dual-rod cylinder system and a MR valve is used to reduce the influences of viscous damping force and improve dynamic range. Driven by the dual-rod cylinder system, MR fluid flows in the MR valve. The pressure drop of the MR valve with dual independent controllable ducts can be controlled by tuning the current of two independent coils. Based on the mathematical model and the finite element method, the damping characteristics of the MR damper is simulated. A prototype is designed and tested on MTS machine to evaluate its damping characteristics. The results show that the working states and damping force of the MR damper can be controlled by the two independent coils.


2020 ◽  
Vol 53 (2) ◽  
pp. 14401-14406
Author(s):  
Gianluca Savaia ◽  
Matteo Corno ◽  
Giulio Panzani ◽  
Andrea Sinigaglia ◽  
Sergio M. Savaresi

2020 ◽  
Vol 29 (7) ◽  
pp. 075019
Author(s):  
Hui Huang ◽  
Chen Chen ◽  
Zhi-Chao Zhang ◽  
Ji-Nan Zheng ◽  
Yu-Zheng Li ◽  
...  

2020 ◽  
Vol 29 (1) ◽  
pp. 1-8
Author(s):  
Ahmed Allali ◽  
Sadia Belbachir ◽  
Ahmed Alami ◽  
Belhadj Boucham ◽  
Abdelkader Lousdad

AbstractThe objective of this work lies in the three-dimensional study of the thermo mechanical behavior of a blade of a centrifugal compressor. Numerical modeling is performed on the computational code "ABAQUS" based on the finite element method. The aim is to study the impact of the change of types of blades, which are defined as a function of wheel output angle β2, on the stress fields and displacements coupled with the variation of the temperature.This coupling defines in a realistic way the thermo mechanical behavior of the blade where one can note the important concentrations of stresses and displacements in the different zones of its complex form as well as the effects at the edges. It will then be possible to prevent damage and cracks in the blades of the centrifugal compressor leading to its failure which can be caused by the thermal or mechanical fatigue of the material with which the wheel is manufactured.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hrishikesh Zambare ◽  
Abhishek Khoje ◽  
Surendra Patil ◽  
Ali Razban

Author(s):  
S. Jin ◽  
L. Deng ◽  
J. Yang ◽  
S. Sun ◽  
D. Ning ◽  
...  

This paper presents a smart passive MR damper with fast-responsive characteristics for impact mitigation. The hybrid powering system of the MR damper, composed of batteries and self-powering component, enables the damping of the MR damper to be negatively proportional to the impact velocity, which is called rate-dependent softening effect. This effect can keep the damping force as the maximum allowable constant force under different impact speed and thus improve the efficiency of the shock energy mitigation. The structure, prototype and working principle of the new MR damper are presented firstly. Then a vibration platform was used to characterize the dynamic property and the self-powering capability of the new MR damper. The impact mitigation performance of the new MR damper was evaluated using a drop hammer and compared with a passive damper. The comparison results demonstrate that the damping force generated by the new MR damper can be constant over a large range of impact velocity while the passive damper cannot. The special characteristics of the new MR damper can improve its energy dissipation efficiency over a wide range of impact speed and keep occupants and mechanical structures safe.


Author(s):  
Edward M. House

Four Textron Lycoming TF40B marine gas turbine engines are used to power the U.S. Navy’s Landing Craft Air Cushion (LCAC) vehicle. This is the first hovercraft of this configuration to be put in service for the Navy as a landing craft. The TF40B has experienced compressor blade pitting, carbon erosion of the first turbine blade and hot corrosion of the hot section. Many of these problems were reduced by changing the maintenance and operation of the LCAC. A Component Improvement Program (CIP) is currently investigating compressor and hot section coatings better suited for operation in a harsh marine environment. This program will also improve the performance of some engine components such as the bleed manifold and bearing seals.


2015 ◽  
Vol 741 ◽  
pp. 28-31 ◽  
Author(s):  
Chang Hyun Cho ◽  
Seung Bok Choi

In modern society, a plenty of car accident is occurred and a lot of people get injury every day. For this reason, the importance of car safety has been increased and car safety has been extensively studied. Especially in many countries, the law about using baby safety seat is legislated to protect babies and children from accident. Thus, recently numerous products for baby safety have been developed. In this paper, a new type baby car seat is proposed to protect babies and children from frontal accident. In order to achieve this goal, design requirements of spring and MR(Magnetorheological) Damper which are main elements for a new type baby car seat are investigated.


2013 ◽  
Vol 690-693 ◽  
pp. 186-192
Author(s):  
Ho Hua Chung ◽  
Tsong Hsin Chen

This study concerned the influence of the material strength, ductility and impact energy and the relationship of the broken section profile vs. ductile transition brittle where the steel material was treated under different tempering temperature and hardness. Generally after the steel materials, 10B35 coil wire materials which was generally applied to form screws, was treated by quenching and tempering, its hardness ranged from HRC30 to HRC45. The results showed that the elongation rate beyond 20.4% would be proportional to the impact energy with linear relation, but with reverse proportion to the hardness value. The brittle-tough point of the hardness was set around HRC37 after heat treatment in order to balance the strength and the toughness. In addition, the coil wire materials were analyzed from broken section materials showing good toughness; this represented that the area of the cross section radiation layer due to ductile fracture would largely increase. On the contrary, the wire material test fragment with bad toughness represented that the area of the shear layer due to brittle fracture would largely increase as well. As to that material, if its hardness was greater than or equal to HRC37, that material would have an excellent turning danger from transition. At the same time, when the tempering temperature of the wire steel material was set under 4600C and its corresponding central hardness was about HRC37, the distance between two cementite phase layers suddenly increased. This result leaded to the reason why the wire material test fragment was turned into brittleness from ductility. Therefore, when the fastener was manufactured under tempering treatment, avoiding the tempering brittleness temperature range was necessary.


Sign in / Sign up

Export Citation Format

Share Document