scholarly journals Preparation of fly ash-granulated blast furnace slag-carbide slag binder and application in total tailings paste backfill

Author(s):  
Chao Li ◽  
Ya-fei Hao ◽  
Feng-qing Zhao
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Mingyue Wu ◽  
Xiangming Hu ◽  
Qian Zhang ◽  
Weimin Cheng ◽  
Zunxiang Hu

Environmentally friendly and cheap composite green cementitious materials have been prepared from carbide slag, fly ash, flue-gas desulphurisation (FGD) gypsum, and granulated blast-furnace slag (GBFS) without using cement clinker. Orthogonal testing was used to investigate the effects of the raw materials on the amount of water required for reaching standard consistency and consistency, setting time, slump value, and strength of the produced materials after curing for 7 d and 28 d. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used for the analysis of the sample microstructure and hydration products as well as for the exploration of possible hydration mechanisms. We found that, among the utilised raw materials, the addition of FGD gypsum had the most significant effect on the setting time and amount of water required for reaching standard consistency and consistency, while the addition of GBFS deeply affected the slump value. The optimal activation results were obtained when the mass ratio of carbide slag : fly ash : GBFS : FGD gypsum was equal to 12.1 : 60.6 : 18.2 : 9.1.


2018 ◽  
Vol 175 ◽  
pp. 01020 ◽  
Author(s):  
Li Chao ◽  
Zhao Feng-qing

Based on activation and synergistic effect among various materials, a low-cost cementing material. FGC binder, was prepared by using fly ash. granulated blast-furnace slag (BFS). carbide slag and compound activator. The results showed that the immobilization efficiency of FGC binder for Pb2+: is higher than that of OPC cement. The hydration products and mechanism of immobilization were analyzed by using XRD. The major products of FGC binder are C-S-H, C-A-H. ettringite and zeolite-like materials. Under the experimental conditions, the Pb2+ curing efficiency of FGC binder is 1.04 ~ 1.24 times that of ordinary Portland cement.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


2011 ◽  
Vol 99-100 ◽  
pp. 420-425 ◽  
Author(s):  
Qian Rong Yang ◽  
Xiao Qian Wang ◽  
Hui Ji

The strength, expansion and amount of scaling of concrete with compound mineral admixture (CMA) from steel slag, granulated blast furnace slag and fly ash were studied. The result shows that damage by crystallization press from sulfate attack when concrete was exposed to sulfate environments under wetting–drying alternation is much larger than that from sulfate chemical attack. Adding CMA to concrete could reduce the damage from expansion of concrete caused by sulfate chemical attack, but the resistance of concrete to damage by crystallization press from sulfate attack was remarkably reduced.


Sign in / Sign up

Export Citation Format

Share Document