scholarly journals Effect of Powder Flow Rate on Surface Finish in Laser Additive Manufacturing Process

Author(s):  
R. M. Mahamood ◽  
E. T. Akinlabi
Author(s):  
Lie Tang ◽  
Jianzhong Ruan ◽  
Robert G. Landers ◽  
Frank Liou

This paper proposes a novel method, called Variable Powder Flow Rate Control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., five–meter pipe, powder dispenser, and cladding head) are constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at the nozzle exit cannot be directly measured, it is estimated using the powder transport system model. The input to this model is the DC motor rotation speed, which is estimated on–line using a Kalman filter. Experiments are conducted to examine the performance of the proposed control methodology. The experimental results demonstrate that the VPFRC method is successful in maintaining a uniform track morphology, even when the motion system accelerates and decelerates.


3D Printing ◽  
2017 ◽  
pp. 154-171 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi

Laser additive manufacturing is an advanced manufacturing process for making prototypes as well as functional parts directly from the three dimensional (3D) Computer-Aided Design (CAD) model of the part and the parts are built up adding materials layer after layer, until the part is competed. Of all the additive manufacturing process, laser additive manufacturing is more favoured because of the advantages that laser offers. Laser is characterized by collimated linear beam that can be accurately controlled. This chapter brings to light, the various laser additive manufacturing technologies such as: - selective laser sintering and melting, stereolithography and laser metal deposition. Each of these laser additive manufacturing technologies are described with their merits and demerits as well as their areas of applications. Properties of some of the parts produced through these processes are also reviewed in this chapter.


2014 ◽  
Vol 1016 ◽  
pp. 177-182 ◽  
Author(s):  
Mutiu F. Erinosho ◽  
Esther Titilayo Akinlabi ◽  
Sisa Pityana

—Pure copper was deposited with Ti6Al4V alloy via laser metal deposition (LMD) process to produce Ti6Al4V/Cu composites. This paper reports the effect of powder flow rate (PFR) and gas flow rate (GFR) of laser metal deposited Ti6Al4V/Cu composites. The deposited samples were characterised through the evolving microstructure and microhardness. It was observed that the PFR and GFR have an influence on the percentage of porosity present in the samples. The higher the flow rates of the powder and the gas, the higher the degree of porosity and vice versa. The widmanstettan structures were observed to be finer as the flow rate reduces which in turn causes a decrease in the hardness values of the deposited composites. The hardness values varied between HV381.3 ± 60 and HV447.3 ± 49.


Sign in / Sign up

Export Citation Format

Share Document