scholarly journals Empirical correlation of heat generation in ball bearings depending on the operational conditions in the supports of aero-engine rotor

Author(s):  
N I Petrov ◽  
Yu L Lavrentyev
Author(s):  
Bingfeng Zhao ◽  
Liyang Xie ◽  
Yu Zhang ◽  
Jungang Ren ◽  
Xin Bai ◽  
...  

As the power source of an aircraft, aero-engine tends to meet many rigorous requirements for high thrust-weight ratio and reliability with the continuous improvement of aero-engine performance. In this paper, based on the order statistics and stochastic process theory, an improved dynamic load-strength interference (LSI) model was proposed for the reliability analysis of aero-engine rotor blade system, with strength degradation and catastrophic failure involved. In presented model, the “unconventional active” characteristic of rotor blade system, changeable functioning relationships and system-component configurations, was fully considered, which is necessary for both theoretical analysis and engineering application. In addition, to reduce the computation cost, a simplified form of the improved LSI model was also built for convenience of engineering application. To verify the effectiveness of the improved model, reliability of turbojet 7 engine rotor blade system was calculated by the improved LSI model based on the results of static finite element analysis. Compared with the traditional LSI model, the result showed that there were significant differences between the calculation results of the two models, in which the improved model was more appropriate to the practical condition.


2018 ◽  
Vol 70 (1) ◽  
pp. 15-22 ◽  
Author(s):  
De-xing Zheng ◽  
Weifang Chen ◽  
Miaomiao Li

Purpose Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not been addressed thoroughly. So far, most researchers only considered the convection effect between bearing housings and air, whereas the cooling/lubrication operation parameters and configuration effect were not taken into account when analyzing the thermal behaviors of bearings. This paper aims to analyze the structural constraints of high-speed spindle, structural features of bearing, heat conduction and convection to study the heat generation and transfer of high-speed angular contact ball bearings. Design/methodology/approach Based on the generalized Ohm’s law, the thermal grid model of angular contact ball bearing of high-speed spindle was first established. Next Gauss–Seidel method was used to solve the equations group by Matlab, and the nodes temperature was calculated. Finally, the bearing temperature rise was tested, and the comparative analysis was made with the simulation results. Findings The results indicate that the simulation results of bearing temperature rise for the proposed model are in better agreement with the test values. So, the thermal grid model established is verified. Originality/value This paper shows an improved model on forecasting temperature rise of high-speed angular contact ball bearings. In modeling, the cooling/lubrication operation parameters and structural constraints are integrated. As a result, the bearing temperature variation can be forecasted more accurately, which may be beneficial to improve bearing operating accuracy and bearing service life.


Author(s):  
Sergio G. Torres Cedillo ◽  
Philip Bonello ◽  
Ghaith Ghanim Al-Ghazal ◽  
Jacinto Cortés Pérez ◽  
Alberto Reyes Solis

Modern aero-engine structures typically have at least two nested rotors mounted within a flexible casing via squeeze-film damper (SFD) bearings. The inaccessibility of the HP rotor under operational conditions motivates the use of a non-invasive inverse problem procedure for identifying the unbalance. Such an inverse problem requires prior knowledge of the structure and measurements of the vibrations at the casing. Recent work by the authors reported a non-invasive inverse method for the balancing of rotordynamic systems with nonlinear squeeze-film damper (SFD) bearings, which overcomes several limitations of earlier works. However, it was not applied to a common practical configuration wherein the HP rotor is mounted on the casing via just one weak linear connection (retainer spring), with the other connections being highly nonlinear SFDs. The analysis of the present paper considers such a system. It explores the influence of the condition number and how it is affected as the number of sensors and/or measurement speeds is increased. The results show that increasing the number of measurement speeds has a far more significant impact on the conditioning of the problem than increasing the number of sensors. The balancing effectiveness is reasonably good under practical noise level conditions, but significantly lower than obtained for the previously considered simpler configurations.


Author(s):  
M C Levesley ◽  
R Holmes

This paper presents experimental results on the non-linear vibration response of a rotating assembly comprising a rotor, flexible bearing housing and oil film damper. For the latter, due consideration is given to the effects of oil-supply pressure, film-rupture pressure and end sealing. The results are compared with predictions based on the Harmonic Balance principle described in a complementary paper (1).


Author(s):  
Joseph Shibu Kalloor ◽  
Ch. Kanna Babu ◽  
Girish K. Degaonkar ◽  
K. Shankar

A comprehensive multi-objective optimisation methodology is presented and applied to a practical aero engine rotor system. A variant of Nondominated Sorting Genetic Algorithm (NSGA) is employed to simultaneously minimise the weight and unbalance response of the rotor system with restriction imposed on critical speed. Rayleigh beam is used in Finite Element Method (FEM) implemented in-house developed MATLAB code for analysis. The results of practical interest are achieved through bearing-pedestal model and eigenvalue based Rayleigh damping model. Pareto optimal solutions generated and best solution selected with the help of response surface approximation of the Pareto optimal front. The outcome of the paper is a minimum weight and minimum unbalance response rotor system which satisfied the critical speed constraints.


Sign in / Sign up

Export Citation Format

Share Document